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Earth Infrared (IR) Emission
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Merrelli, A. The Atmospheric Information Content of Earth’s Far Infrared. University of Wisconsis-Madison. November, 2012. 
http://www.aos.wisc.edu/uwaosjournal/Volume19/Aronne_Merrelli_PhD_Thesis.pdf

• Earth absorbs the Sun’s radiation and re-radiates 
in the infrared range

• “Long-wave” considered > 4 um (wavenumber of 
2500 cm-1 )

• Earth’s emission is a strong long-wave IR signal

• For satellites in LEO at 500km, IR radiation from 
the Sun is insignificant due to the small solid angle 
subtended by the Sun in comparison to Earth 

• Sun solid angle: ~ 7×10−5 sr

• Earth solid angle: ~ 4 sr

The solar irradiance and the Earth’s spectral emittance
(for a clear sky standard atmosphere) 



Thermopile Detectors
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Excelitas thermopile detector
TPD 1T 0214 G9 / 3850

Standard thermopile sensor sensitivity

• Thermopiles convert thermal energy into 
electrical energy

• Filters can be integrated to reduce transmission 
spectral band width

• Sensor sensitivity has Gaussian characteristics

• Effective field of view can range from fine (7o –
10o with lens) to coarse (60o – 70o)
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IR Earth Horizon Sensors (EHS)

• Thermopiles can be mounted on 
satellites to detect Earth’s IR radiation

• For fixed body-mounted sensors, 
mounting orientation depends on orbit  

• Valid horizon sensing achieved when 
sensor FOV partially obscured by Earth

• IR EHS still work in eclipse periods (not 
possible with visible camera EHS)
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STK model of MicroMAS satellite



Earth-limb-space Sensor Configuration 
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“Space“ sensor 
• “cold” reference
• 0% obscuration

Horizon sensor 
• Partial obscuration

“Earth“ sensor 
• “hot” reference
• 100% obscuration

3 sensors/mount

• Use “Space” and “Earth” as 
reference for middle horizon 
sensors

• Mitigate the effects of 
variation in Earth’s IR signal

• Coarse pointing using other 
attitude sensors required for 
EHS readings to be valid



Objectives

Given 2 valid horizon sensor 
readings from distinct mount 
directions: 

• Estimate nadir vector with high 
accuracy (using only limited satellite 
computational resources)

• Evaluate the accuracy of the 
estimation through simulation results

• Analyze the sensitivity of estimation 
with alignment uncertainties
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STK model of MicroMAS satellite
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1. Sensor reading to sensor obscured area
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Spacecraft-centered celestial sphere with 
projections of sensor FOV and Earth disk

ε = sensor FOV radius
ρ = Earth disk radius 
α = angle between nadir and sensor boresight
S = overlap area between sensor FOV and Earth disk

Simple model: 
- Earth IR emission is relatively constant within sensor FOV
- Earth shape is circular
- Sensor responsitivity is uniform within FOV 
- Satellite altitude is constant 

Sensor reading is approximately proportional to the area 
obstructed by Earth in sensor FOV. 

will be refined 
in next section

Sensor 

FOV

ε

Unit sphere 

around satellite

ρ

S

Earth 

Disk

α



2. Sensor obscured area to nadir angle
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𝑺(𝜶) ∝ 2[π − cos(𝜌) acos(
cos ε −cos ρ cos 𝜶

sin ρ sin 𝜶
) −

cos(𝜀) acos(
cos ρ −cos ε cos 𝜶

sin ε sin 𝜶
) −

acos(
cos 𝜶 −cos ε cos ρ

sin ε sin ρ
)]

J. Wertz. Spacecraft Attitude Determination and Control. 1978

Spacecraft-centered celestial sphere with 
projections of sensor FOV and Earth disk
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ε = sensor FOV radius (constant)
ρ = Earth disk radius (assume constant for this analysis)
α = angle between nadir and sensor boresight
S = overlap area between sensor FOV and Earth disk



3. Nadir angles to nadir vectors
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• Sensor boresights:  𝑆1,  𝑆2

• Nadir angles: φ1, φ2

• Possible nadir vector:  𝑃 ,  𝑃 ’ 

 𝑃 ∙  𝑆1 = cos(φ1)
 𝑃 ∙  𝑆2 = cos(φ2)

 𝑃 =1

 

𝑃𝑥 𝑆1𝑥+ 𝑃𝑦 𝑆1𝑦 + 𝑃𝑧 𝑆1𝑧= cos(φ1)

𝑃𝑥 𝑆2𝑥+ 𝑃𝑦 𝑆2𝑦 + 𝑃𝑧 𝑆2𝑧= cos(φ2)

𝑃𝑥
2 + 𝑃𝑦

2 +𝑃𝑧
2=1

System of equations can be solved analytically
Contains a 2nd order equation →maximum of 2 solutions

Assume low sensor noise and correct calibration
→ 2 possible nadir vectors (ambiguity)

Geometric representation of the solutions



4. Resolve ambiguity 

• Acquire lock: 

• Need another attitude sensor (coarse) to 
resolve ambiguity

• Use EHS for fine attitude knowledge

• Maintain lock: 

• Always choose nadir vector below  𝑆1 - 𝑆2
plane (  𝑃 ∙  𝑆3 < 0)

4/15/2014 Nguyen
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 𝑃

 𝑃′
 𝑆1

 𝑆3 =  𝑆1 × 𝑆2
 𝑃 ∙  𝑆3 < 0
 𝑃′ ∙  𝑆3 > 0

(from symmetry)

The 2 nadir solutions can be distinguished as being below 

and above surface containing  𝑆1 and  𝑆2
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Sensor Gaussian approximation model
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• Gaussian responsitivity curve can be approximated with piece-wise constant function 
• Sensor field can be divided into regions of constant sensitivity with corresponding weight factor

Sensor responsitivity 3D  approximationSensor responsitivity 2D  approximation
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Sensor Gaussian approximation model
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Sensor FOV

𝑆 = 𝑆1𝐺1 + 𝑆2𝐺2 + 𝑆3𝐺3

𝑆1, 𝑆2, 𝑆3: overlap area of Earth disk with each sensor region
𝐺1, 𝐺2, 𝐺3: Gaussian weighting factors
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Altitude Correction
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𝑅𝐸

𝑅𝐸
′

𝑅

Earth model: Ellipsoid WGS84

ρ
• Important for de-orbiting phase of 

missions and for satellites in high-
eccentricity orbit

• Earth disk radius: 

ρ ≅ sin−1
𝑅𝐸
′ (  𝑥)

𝑅 (  𝑥)

where: 

 𝑥 = satellite position (from GPS or TLE)

𝑅𝐸
′ (  𝑥) = Earth radius from WGS84 model 

𝑅 (  𝑥) = Orbit radius 

satellite
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Testing with STK System Simulation

STK 
Simulation

Earth 
obscuration 

percentage in 
sensor FOV 

Convert to 
sensor values

Convert to 
nadir angles

Solve for 
possible nadir 

vectors

Output nadir 
vector 
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Simulated 
nadir vector

Compare



Satellite Tool Kit Simulation Scenario
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• Spacecraft sensor model
• sensor FOV: ~10o

• mount directions: -  𝑥, +  𝑦
• horizon sensor dip angle: ~20o

• Attitude setting
• Attitude: Spin aligned around nadir
• Spin rate : 0.1 rev/min
• Nutation levels: 4o

→ Satellite’s z-axis oscillates around nadir 
vector with maximum offset of 4o.

 𝑥

 𝑧

 𝑦

Nadir



Simulation Scenario Orbit Profile

• ISS Orbit

• High Precision Orbit 
Propagator (HPOP)
• Including 

environmental 
perturbations

• Altitude range: 

~ 400 km – 430 km
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Simulation Results: Uniform Sensor

4/15/2014 Nguyen 22

• Sensor sensitivity: Uniform

• No altitude correction
Angular error: (1.23 +/- 0.43) o



Simulation Results: Gaussian Sensor
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• Sensor sensitivity: Gaussian 

• No altitude correction Angular error: (0.28 +/- 0.14) o



Simulation Results: Gaussian + Altitude
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• Sensor sensitivity: Gaussian 

• Altitude correction Angular error: (0.18 +/- 0.082) o
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Sensor alignment errors

• Assume perfect mounting in  
and  

• Mounting error occurs only 
in  (“dip” angle)

• Total mounting error  sum of 
offsets/misalignments on 
both mounts (δ𝑥+ δ𝑦)
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 𝑧

 𝑥

 𝑦

Nadir

δ𝑥 δ𝑦

Actual sensor 
boresight

Measured 
sensor boresight



Sensitivity to alignment errors
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0.5o mounting error

x-y pointing offset 

1o mounting error

z pointing uncertainty 

1o mounting error

2o mounting error

Nadir estimation errors
Nadir direction – centered at (0,0,0)

no 
mounting 

error



Boresight measurement sensitivity 
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𝑦 = 1.38𝑥 + 0.12

• Nadir estimation error sensitivity to 
alignment error follows linear 
correlation

• 1o boresight offset leads to 1.4o

attitude error

• x and y errors are more dominant than 
z errors
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Conclusion and Future Work

Conclusion

• Nadir vector estimation method from EHS was presented

• Estimation accuracy was verified through simulations to be 0.2o

(assuming perfect sensor response and alignment)

• Nadir estimation error increases linearly with sensor alignment errors 

Future work

• Quantify the effects of sensor response error

• Verify attitude accuracy from satellite data
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Q&A
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Back-up slides
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Proof that P and P’ are on opposite side of 
plane containing S1 and S2
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 𝑃

 𝑃′
 𝑆1

 𝑆3 =  𝑆1 × 𝑆2

 𝑃 ∙  𝑆3 < 0
 𝑃′ ∙  𝑆3 > 0

(from symmetry)

The 2 nadir solutions can be distinguished as being below 

and above surface containing  𝑆1 and  𝑆2

 𝑃 ×  𝑆3 =  𝑃 ×  ( 𝑆1× 𝑆2) =  𝑆1 (  𝑃 ×  𝑆2) - 𝑆2 (  𝑃 ×  𝑆1)

=  𝑆1 cos(𝜙2) - 𝑆2 cos(𝜙1) 

= constant

=   𝑃′ ×  𝑆3

->  𝑃 ×  𝑆3 =  𝑃′ ×  𝑆3

-> sin(  𝑃,  𝑆3) = sin(  𝑃′,  𝑆3) 

-> P and P’ belongs to different half-space divided by S1-
S2 plane



2-sensor configuration ambiguity
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 𝑧  𝑥

 𝑦

Earth

 𝑦

Earth
 𝑧

 𝑥

Both attitudes yield the same sensor readings


