

Two-Stage Control for CubeSat Optical Communications

Ryan W. Kingsbury Kathleen Riesing, Tam Nguyen, Prof. Kerri Cahoy **MIT Space Systems Lab**

CalPoly CubeSat Developers Workshop April 24, 2014

- Problem Statement
- Prior Art:
 - Free-space Optical Communications at LEO
 - CubeSat-scale FSO
- FSO System Architecture & Requirements
- Pointing, Acquisition and Tracking (PAT)
- Future Work

Design and optimize a CubeSat-scale free-space optical communication system utilizing *staged pointing control*.

- Free-space optical (FSO) communications
 - Improve size, weight and power (SWaP) over RF
 - Reduced regulatory burden
- **High-gain** apertures → *stringent pointing requirements*
- Current FSO realizations are for larger spacecraft
 - 10's of kg, 10's of Watts
 - Microradian (~arcsecond) pointing

- Problem Statement
- Prior Art:
 - Free-space Optical Communications at LEO
 - CubeSat-scale FSO
- FSO System Architecture & Requirements
- Pointing, Acquisition and Tracking (PAT)
- Future Work

OICETS / LUCE

- LUCE: Laser-Utilizing
 Communications Experiment
- Successful LEO-to-ground FSO demo (2005-2009)
- Bidirectional capability
- Closed-loop tracking using beacon signal
- Multi-stage control
 - Range/resolution limits that are inherent to all actuators
 - Coarse: 0.1 deg @ 10 Hz (gimbal)
 - Fine: 1 urad @ 200 Hz (piezo FSM)

AeroCube-OCSD

- 1.5U CubeSat (x2)
- 5 Mbps downlink
 - Body-pointing only
 - 1065 nm, 1.4 deg. HPBW
 - 14W optical power out
- Ground station (Mt. Wilson)
 - 30 cm aperture
 - COTS APD detector

- Pointing accuracy from 0.6 deg to 0.1 deg (sensor dependent)
- Project status: Launch in late 2014, early 2015

- AeroCube-OCSD is an **important first step**, however...
 - Single stage control design
 - Body pointing only, lacks steerable optics
 - Difficult to scale to higher data rates due to TX power limits
- Our design philosophy:
 - FSO payload should be self-sufficient, applicable to a multitude of missions
 - Partitioned control scheme makes use of host's ADCS, while providing fine steering mechanism for FSO

Beam width reductions are key to improving FSO systems

- Problem Statement
- Prior Art:
 - Free-space Optical Communications at LEO
 - CubeSat-scale FSO
- FSO System Architecture & Requirements
- Pointing, Acquisition and Tracking (PAT)
- Future Work

FSO System Configuration

- Most CubeSat developers want to downlink science data
 - Asymmetric link design
- Hybrid RF/ optical system:
 - Low-rate RF link (UL/DL)
 - High-rate optical DL
- Closed-loop tracking using optical beacon signal

Requirements

- Link Parameters
 - Rate: 10 Mbps
 - Range: 1000 km
- Space Segment
 - Size/mass: 0.5U, 1 kg
 - Power: 10W (TX), 1W (idle)
- Ground Segment
 - Transportable telescope & mount (e.g. 30 cm)
 - COTS detector technology (e.g. APD, PMT)

Example Downlink Radiometry

- Transmitter:
 - 1550 nm at 1 W
- Receiver:
 - Aperture: 30 cm
 - Sensitivity: 1000 photons/bit
- Atmospheric losses: 6 dB

(0.72 arcmin or 0.21 mrad)

CubeSat ADCS Today

Mission	Organization	Year	Pointing Accuracy
AeroCube 4	The Aerospace Corporation	2012	3.0 deg
Aeneas	USC SERC	2012	2.0 deg
QbX-1/QbX-2	NRL	2010	5.0 deg
CanX-2	University of Toronto SFL	2008	2.0 deg
OCSD	The Aerospace Corporation	~2015	0.1 deg

- Pointing accuracy to 2.0° has been demonstrated
- Sub-degree accuracy missions are under development
- Also need simultaneous high-rate slew (~ 1 deg/sec)
 - Open question: how is accuracy degraded by slew maneuver?

Large gap between current CubeSat ADCS solutions and pointing needs of high-rate low-power FSO comm.

Staged Control Approach

- Range/resolution/bandwidth limitations are inherent to *all* actuators and sensors
- Multi-stage solutions can alleviate these limitations
- Initial assumptions for stage partitioning (TBR):

	Coarse Stage (host CubeSat)	Fine Stage (FSO payload)	
Туре	Body-pointing/slew	Optical steering	
Range	Full sphere	5 degrees	
Accuracy/ Resolution	5 degrees (3σ)	0.01 degrees (3σ) (Based on beam width)	
Bandwidth	< 1 Hz	> 1 Hz	

Space Segment Diagram

Optical Steering Solutions

- PI S-334 Tip/Tilt Mirror
 - Two-axis, 12.5 mm mirror
 - Piezo-electric actuation
 - Steering range: 50 mrad
 - Bandwidth: up to 200 Hz
 - Size: 4 x 2 x 3 cm
- Mirrorcle Tech. S1630DB
 - Two-axis, 4.2 mm mirror
 - Electrostatic actuation
 - Steering range: 100 mrad
 - Bandwidth: up to 1 kHz
 - Small chip-scale package

Image: Physik Instrumente L.P.

Image: Mirrorcle Tech.

Closed-Loop Tracking Options

- Exploring two acquisition/tracking detector options
 - Quadcell: limited FOV, good sensitivity, complex optics
 - Focal plane: wider FOV, but less sensitive, simpler optics

- Problem Statement
- Prior Art:
 - Free-space Optical Communications at LEO
 - CubeSat-scale FSO
- FSO System Architecture & Requirements
- Pointing, Acquisition and Tracking (PAT)
- Future Work

- PAT: Pointing, acquisition and tracking
 - Start: mission-specific satellite attitude
 - End: fine-pointing alignment of optical terminal with ground station, optical link established
- Acquisition starts at 1000 km range
 - 400 km LEO orbit \rightarrow approx. 20 degrees above horizon
 - Atmospherics make acquisition difficult at lower angles
- Beam point-ahead issues can be ignored due system beam width and orbital geometry.
 - 400 km LEO \rightarrow 51 microradian (10 arcsec)

	Ground Terminal	Space Terminal
Point	 Point telescope (open-loop) at predicted satellite position Enable uplink (UL) beacon 	 Host ADCS points to ground terminal; use uplinked TLEs WFOV beacon detector looks for UL signal Coarse pointing scan (optional)
Acq.	 Waits for downlink acquisition sequence 	 Steer FSM to offset indicated by UL beacon (fine steering) Transmit downlink acquisition sequence
Track	 Monitor link performance Refine pointing based on arrival angle of downlink (optional) 	 Switch to comm transmission Coarse pointing errors fed to host ADCS

Goal: High probability we hit the satellite with the beacon

- Sources of uncertainty
 - Satellite position knowledge: 2 mrad
 - Ground telescope pointing: 200 urad
- Ground segment implications
 - Beacon divergence must be larger than uncertainties
 - Eye safety limitations
- Space segment implications
 - Tracking detector field of regard must be larger than spacecraft coarse pointing uncertainty
 - Detector resolution must be better than desired fine pointing performance

- Control system analysis
 - End-to-end system model: performance during slew
 - Stochastic analysis: actuator saturation, stage handoff time
- Component selection & qualification
 - Optical transmitter / amplifier
 - Fast-steering mirror, driver integration
 - High-speed electronics: driven by FEC/interleaving needs
- Beacon design: spatial diversity needs
- End-to-end bench demonstration
 - Flight-like optical components, eval. board electronics
 - Disturbances simulated with mechanical "shaker" table

- First attempts at CubeSat FSO comm motivated by:
 - Demand to downlink payload data
 - Advances in CubeSat ADCS
- Our work will address future implementation gaps:
 - Optical steering mechanism and staged control
 - High-speed electronics
- Acknowledgements
 - JPL Strategic University Research Partnership (H. Hemmati, W. Farr)
 - NASA NSTRF Program (A. Swank)
 - Thesis Committee (D. Caplan, J. Twichell at MIT LL)