

TechEdSat-N

Pioneering the Use of the International Space Station as a Nanosatellite

Deployment Platform

M.Murbach, and A. Guarneros Luna

TES-Team

March 24, 2014

Next-Up!

Outline

1.Introduction

- 1. Teams/Introduction
- 2. Mission/Objectives
- 3. Milestones
- 4. System Status
- 5. Comparison TES-4 from TES-3p
- 6. Exploded View/Structure
- 7. Design Deltas/Doc Deltas
- 2. Concept of Operation
 - 1. Operational Concept
- 3. Export Control
- 4. Batteries/Electrical System
 - 1. Mechanical layout (2nd battery)
 - 2. Wiring diagram
- 5. Mechanical Interface
- 6. Telemetry/Transmitters
 - 1. Type
 - 2. FCC License

TechFdSat-N

7. Testing Hardware Description

- 1. Types (TES-3p to TES-4)
- 2. Source of Requirements
- 3. Cygnus levels (theoretical)
- 4. Random vibration
- 5. Functional Test Example
- 8. Post-delivery Anomaly
- 10. Standard Hazards (SHR)
- 11. Unique Hazards UHR)
- 12. SVTL/Status
- 13. Comment Matrix
- 14. Avionics Subsystem

- 15. Back-up Material
 - 1. Material List
 - 2. Fastener Location/Map
- 3. Earlier Testing

National Aeronautics and Space Administration

Collaboration Between NASA Ames plus Universities (SJSU, U of Idaho, ISU)

National Aeronautics and Space Administration

Contributors from Universities

San Jose State University

Dr. Perikles Papadopoulos

University of Idaho

Dr. David Atkinson

What is it?

- Collection of professionals, professors, and students working in a 'skunk works' setting
- Rapid development of 1-3U satellites for ISS jettison platform

National Aeronautics and Space Administration

Why is it relevant?

How to use the J-SSOD, NRCSD (and future traffic models)

- Pioneering the use of the ISS as a means of 'launching' Nano satellites.
 - Developing key process and 'design for safety'
- Developing key technologies
 - RAD tolerant processor testing/ architectures
 - Manufacturing Techniques
 - Comm(e.g., Iridium)
 - De-orbit experiments

Why is it relevant?

Jettison options

- The ISS offers a unique future path for nano satellites
- Recent advent of NanoRacks CubeSat Deployer (NRCSD) will markedly increase Nano satellite launch traffic
- NRCSD:
 - 48U/ airlock cycle;
 - 96U/Cargo Flight
 - 3 flights per year
 - = 288U/year

National Aeronautics and Space Administration

Previous Flights: TechEdSat 1

- We were 1st!
- Nominal Success Criteria
- Demonstrated ISS Safety Design for jettison from ISS
- Demonstrated 2-tier RAD-Tolerant Architecture (ÅAC Microtec)
- Comm Experiment
 - (UHF, Iridium, OrbComm)
- Launch Date on HTV3 August 14, 2012
- Jettison on October 4, 2012
- ~7 month duration

Previous Flights: TechEdSat 2

- We were 1st (Antares-1)
- Comprehensive Success
 Criteria
- Demonstrated Comm Experiment
- Launch on April 23, 2013
 on Antares-1
- Duration: 24 hrs (by design)

Previous Flights; TechEdSat 3

- We were 1st 3U Jettisoned from ISS
- Nominal Success Criteria
- First Exo-Brake
 Demonstration
- Advanced Manufacturing
- Comm Experiment II
- Two Tier Architecture
- Launch August 20, 2013
 on HTV4
- Jettison on November 23rd, 2014
- Re-entry on January 6, 2014

National Aeronautics and Space Administration

Current Flights: TechEdSat 4

- 1st NASA NanoSatellite 3U Jettisoned from the NRCSD (July 2014)
- Exo-Brake Demonstration
 - B=8kg/m^2
- Advanced Manufacturing
- Comm Experiment III +
 GPS
- Two Tier Architecture

Key Attributes

National Aeronautics and Space Administration

- Battery/ Power System
- Accepted Materials: MAPTIS Database (low qty and off-gassing)
- Structural Integrity
- Shatterability

(e.g., solar cells)

- Minimize hang-fire issues
- Testing at workmanship levels

Test Test Test!!

TechEdSat Document Tree/ Process

TechEdSat Project ARC

- Project Plan
 - Requirements
 - SEMP
 - Ground Ops/Safety
 - Flight Ops
 - Test Plan/Procedures
 - TM Summary
 - ODAR
 - SpaceCap Data Form
 - FCC Submittal; Approval
 - SBD Letter of Awareness (Communication system)
- ICD
- PDR (JSC Kickoff)
- CDR
- FRR

Delivery/Launch

ISS Safety (JSC)

COC

(Certificate of

Compliance)

- Standard/Reference Safety
 Document
 - ICD Verification
 - PSRP Documentation
 - HR/UHR (Hazard Reports)
 - Standard Hazards
 - Sharp edges, Shatterable Materials, Outgasssing, Flammable Materials, Touch Temperature
 - Unique Hazards (4)
 - Battery, Structural Failures, Antenna Deployment, EMI

COFR

National Aeronautics and Space Administration

Process for ISS

- Payload Safety Review Panel (PSRP)
 - Four phase (0,I,II,III)
- Hazard Reports
 - Standard
 - Unique
- Safety Data Package (SDP)
- NASA payload must produce their own SDP; Depending on complexity
- For other 'they might be part of the NanoRacks NRCSD SDP'
 - However they must pass all the criteria of SHRs and UHRs.

Selected Documents

Innovation

Discovery

JSC Form 1230	Flight Payload Standardized Hazard Control Report for TechEdSat	Rev August 10, 2010	
NSTS/ISS 13830	Payload Safety Review and Data Submittal Requirements	Rev C July 1998	
SSP 52005	Payload Flight Equipment Requirements and Guidelines for Safety- Critical Structures	Rev D, March 2008	
SSP 57000	Pressurized Payloads Interface Requirements Document	Rev K June 2010	
JMX-2011073NC	JEM Payload Accommodation Handbook - Vol.8-Satellite Deployment Interface (For Technical Demonstration Mission)	Initial Release October 2010	
JMX-2011216NC	JEM Remote Manipulator System (JEMRMS) Multi-Purpose Experimental Platform (MPEP) Interface Control Document (ICD) for Payload Users	Rev NC August 2011	
EP-03	EP5 Battery Design Evaluation Form for TechEdSat	Rev B	
SSP 50223	Standard Payload Integration Agreement for Pressurized Payloads	Rev A	
NR-SRD-029	NanoRacks CubeSat Deployer (NRCSD)Rev 36Interface Control Document (ICD)		
N/A	CubeSat Design Specification	Rev 12 (August 2009)	

Representative Standard Hazards

Discovery
Innovations

TES4 Hazard #	Title	Note	Status
TES4-STD_HR-1	Flammable Materials	Same as TES3-STD_HR-1	Closed to SVTL
TES4-STD_HR-2	Materials Off-Gassing	Same as TES3-STD_HR-2	Closed to SVTL
TES4-STD_HR-3	Mechanical Hazards	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013.	N/A
TES4-STD_HR-4	Touch Temperature	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013.	N/A
TES4-STD_HR-5	Shatterable Material Release	Same as TES3-STD_HR-5 (Include reference document: NR-SRD-029 NanoRacks CubeSat ICD Rev 36)	Closed to SVTL
TES4-STD_HR-6	Nonionizing Radiation	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013 Refer to TIA 1369	N/A
TES4-STD_HR-7	Lasers	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013	N/A
TES4-STD_HR-8	Noise Exposure	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013	N/A
TES4-STD_HR-9	Battery Failure	Addition of second flight –approved Canon BP-930 battery. See Unique Hazard Report TES-DOC- ISS-004B in Attachment C	Closed to SVTL

National Aeronautics and Space Administration

Discovery
Innovation

TES4-STD_HR-10	Capacitors	Same as TES3-STD_HR-10 See EP-03 form in Attachment C	N/A
TES4-STD_HR-11	Electrical Power	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013	N/A
TES4-STD_HR-12	Mating/Demating	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013	N/A
TES4-STD_HR-13	Rotating Equipment	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013	N/A
TES4-STD_HR-14	Interference with Translation Paths	N/A per NanoRacks STD-CUBESAT1-001, December 6, 2013	N/A
TES4-STD_HR-15	Structure Failure	Same as TES3-STD_HR-14. See Unique Hazard Report TES-DOC- ISS-005	Closed to SVTL
TES4-STD_HR-16	Structural Failure of Sealed Containers	N/A	N/A
TES4-STD_HR-17	Structural Failure of Vented Containers	Same as TES4-STD_HR-17	Closed to SVTL

Representative Unique Hazards

Document #	Description	Notes
TES3-DOC-ISS-005C Updated to TES4-DOC-ISS-005B (in TES4_622_Attachment C_UHRS_RevA)	Structural Failure inside J-SSOD/NRCSD	Test report (TES4-TEST-ENV-009E) Fracture/Fastener Control Plan (TES4- DOC-ISS-006A) Closed to SVTL
TES3-DOC-ISS-003B	Satellite communication devices release of non-ionizing radiation	Withdrawn for TES-3p Not Applicable
TES-DOC-ISS-004B Updated to TES4-DOC-ISS-004B (in TES4_622_Attachment C_UHRS_RevA)	Rupture/Leakage of Li-Ion Battery (formerly: Rupture of Li-Ion battery and escape of electrolyte or build-up of gasses could lead to explosion. Battery description: 7.4 Volts Li-Ion, Canon, Model BP-930 with a capacity of 3AH) Difference from TES-3p: TES-4 has two batteries in parallel	EP-03 Submitted J.Jeevarajan (signed 3-19-14)
TES3-DOC-ISS-007B	Impact/collision due to inadvertently deployed hardware [inadequate satellite deployment]	Not Applicable There is no 'hangfire' concern with the NRCSD because it has a smooth internal bore and the jettison plate does not 'hang'
TechEdSat-N		

TechEdSat 5

- Modulated Exo-Brake
- Target Area at Von Karman Altitude
- Active control (uplink/ downlink)

ISS Sample Return SPQR-Small Payload Quick Return

- 3 stage concept
- On-demand sample return

What is Next?

Atromos: Cubesat Mission to the Surface of Mars

Summary

- TES-N series has helped to train ~40 individual now at NASA, SpaceX, Boeing, Lockheed and ...Start-ups!
- Several 'Firsts' for ISS deployed experiments
- Numerous Technologies Advanced
 - COM
 - Fabrication
 - De-Orbit Systems
 - Architecture
- Pioneered Safety Processes for Satellite Jettison
- Future Work leads to ISS Sample Return, Advance Reentry Development And Mars!

