
Slide 1

Overview of SSDL’s

Telemetry Capture,
Storage & Retrieval System

(TECSTARS™)

Andrew E. Kalman <aek@stanford.edu>

Slide 2

Used on LMRST-Sat, a joint SSDL-JPL 3U
CubeSat mission

Host hardware: 12MHz 16-bit TI MSP430F2618 (116KB Flash, 8KB RAM)

Host software: Salvo RTOS + EFFS-THIN SD Card driver

Nonvolatile storage: 2GB SD Card, FAT16 format

Communications downlink: >=9600bps

LMRST-Sat’s purpose: Flight-test the JPL
Low-Mass Radio Science Transponder (LMRST)

using a CubeSat and the Deep Space Network

Slide 3

Vizon Ground Station
The presence of TECSTARS on LMRST-Sat makes monitoring its health and status
and downloading telemetry very simple:

So, how does
TECSTARS™

work?

Slide 4

LMRST-Sat Telemetry
EPS + BATT:

Voltages, currents and solar panel temperatures
Provided by EPS & BATT modules I2C slaves (MSP430 is I2C Master)
= 22 (voltage), 22 (current) & 18 (temperature) bytes data

LMRST payload:
Eight health-and-status voltages
Provided by MSP320’s on-chip multi-channel 12-bit ADC
= 16 bytes data (no packing)

GPS:
Time, elevation, latitude, longitude, #(sats) visible, etc.
Provided by on-board space-grade GPS receiver (NovAtel OEM615V)
= 18 bytes data

Beacon:
Selected status indicators (e.g., charge/discharge, busy/not busy, mode)
Command counters (e.g., received, executed, rejected & queued)
Selected physical parameters (e.g., battery voltages)
On-board time
File counts
= 29 bytes data

Slide 5

Telemetry Requirements
All telemetry must be uniquely identifiable. Therefore:

Related telemetry datapoints (or data vectors) may be grouped into telemetry
datasets
Telemetry datasets are organized into channels, each with a unique ID
Within a channel, each telemetry dataset must:

have a unique sequence number
be timestamped

Example:
All eight LMRST voltages are grouped together as one dataset, with one ID (4)
The sequence numbers normally start at 0 and increment for every new dataset
The current onboard time is recorded with each new dataset

Every dataset will be organized in a standardized packet. The packet format is:

Header: ID, length, sequence number & timestamp 10 bytes
Carton: dataset < 230 bytes
Footer: checksum 2 bytes

Note that the dataset size may vary from one channel to another, based on the
characteristics of the channel’s telemetry.

Slide 6

Telemetry Application Packet (TAP) Structure

LMRST-Sat’s Telemetry Application Packet (TAP) structure for LMRST telemetry (TAP ID = 4)

The carton in a TAP contains only information associated with the dataset values and
(optionally) additional time-related information that may augment the timestamp.

Slide 7

The TAP Packet’s Role in TECSTARS
Each time the system captures new telemetry, it generates a new and unique TAP
packet for the given TAP ID, using the channel’s next consecutive sequence
number and the current on-board timestamp.

When the system stores the new telemetry (by broadcasting it and/or saving to SD
Card), no further changes to the TAP are required. If the TAP is broadcast, it’s
encapsulated into a Radio Application Packet (RAP). If the TAP is stored to SD
Card, it’s written to a file as-is, where the TAP ID and sequence number specify the
filename and position in the file.

When the system is asked to retrieve the telemetry, the user specifies the TAP ID
and a range of sequence numbers, and the system extracts those TAPs and
broadcasts them within RAPs.

Slide 8

Flight Software: Structure & Components
Each TAP ID has a TAP structure associated with it:

typedef struct {
uint8_t action; // action(e.g. save to SD card)
uint8_t size; // size of the TAP in bytes (complete, w/header & footer)
uint8_t interval_idx; // capture interval (lookup into table)
uint8_t (*carton_fill_fp) (void); // carton fill function (TAP-specific)
uint32_t seq_num; // sequence number

} TAPStruct_t;

Each TAP ID has a dedicated carton-filling function:

uint8_t carton_LMRST_fill_TAP(void) {
uint16_t lmr_data[DATA_VECTOR_SIZE_LMRST_TELEM];
uint8_t i;

read_LMRST_telem(lmr_data);
// put in LMRST data -- locally it's little-endian, this converts to big-endian
for(i=0; i<DATA_VECTOR_SIZE_LMRST_TELEM; i++) {

tapContents[tap_ptr++] = lmr_data[i] >> 8; // MSB is stored first
tapContents[tap_ptr++] = lmr_data[i] & 0x00FF; // LSB is stored last

} /* for() */

return 0; // no error
}

9 bytes fully define this TAP’s actions

Slide 9

Flight Software: Usage
Each TAP must be initialized before use:

…
TAP_set_action(TAP_ID_LMRST, SEND_TAP_SDCARD);
TAP_set_size(TAP_ID_LMRST, SIZEOF_TAP_ID_LMRST);
TAP_set_interval(TAP_ID_LMRST, TAP_ID_LMRST_INTERVAL_DEFAULT);
TAP_set_carton_fn(TAP_ID_LMRST, carton_LMRST_fill_TAP);
…

The action controls how the data is stored (broadcast and/or SD Card).
The size depends on the data being collected.
The interval sets the period between successive telemetry captures.
The carton function uniquely captures the telemetry for this TAP.

The action and interval are often redefined while on orbit, based on current
requirements.

Slide 10

Flight Software: Runtime
We’ve chosen to assign a unique task (the Application in Telemetry
Application Packet) to each TAP ID in the LMRST-Sat FSW:

void task_TAP_LMRST(void) {

TAP_set_action(TAP_ID_LMRST, SEND_TAP_SDCARD);
TAP_set_size(TAP_ID_LMRST, SIZEOF_TAP_ID_LMRST);
TAP_set_interval(TAP_ID_LMRST, TAP_ID_LMRST_INTERVAL_DEFAULT);
TAP_set_carton_fn(TAP_ID_LMRST, carton_LMRST_fill_TAP);

while(1) {
OS_DelayTS(TAP_get_interval(TAP_ID_LMRST));
TAP_push_TAP(TAP_ID_LMRST);

} /* while() */

} /* task_TAP_LMRST() */

After TAP initialization, the TAP task runs periodically, as
per the TAP’s capture interval.

Each time the TAP task runs, it creates a (new) TAP packet by:
Adding a header with the TAP ID, sequence number and timestamp to the packet;
Capturing the TAP’s telemetry via its carton function and putting that data into the

packet;
Adding a checksum to the packet; and
Broadcasting the TAP and/or storing it to a file on the SD Card.

Slide 11

TAP File Structure

Hex view of LMRST-Sat’s bus telemetry (TAP ID = 3, capture interval = 30s) as stored in file \INIT\003\000000.000.

10 bytes of TAP header, 2+8 bytes of data, 2-byte checksum -> 22 (0x16) bytes per TAP
(TAP ID = 3).

sequence number difference between successive timestamps = 30(s) checksumcartons

Slide 12

Flight Software: File Management
A TAP’s one-byte ID and 4-byte sequence number uniquely define where it will be
stored on the SD Card (FAT16 format).

The folder where the files are stored is named after the TAP ID.

The filename (DOS 8.3 format) incorporates the most significant three bytes of the
timestamp in its name.

The least significant byte of the sequence number indicates the position of the
TAP in the file (i.e., the line number, starting with 1).

Examples:
TAP ID 7, Sequence Number 0: INIT\007\000000.000, line 1
TAP ID 12, Sequence Number 312: INIT\012\000000.001, line 57
TAP ID 4, Sequence Number 43,671: INIT\004\000000.170, line 152
TAP ID 5, Sequence Number 157,796: INIT\005\000002.104, line 101

FAT16 is limited to 512 entries in the root folder. FAT16 subfolders are allocated with a
linked list structure and can accommodate an unlimited number of files.[1]

Slide 13

Telemetry Retrieval
Telemetry is retrieved based on:

TAP ID
Sequence Number

Downloaded telemetry includes:
TAP ID
Sequence Number
(Onboard) Timestamp

… and can have additional
timestamps (e.g., reception time) as
well.

Slide 14

Review TECSTARS Features
Size of each dataset is limited only by TAP packet format.

Each dataset is ID’d by its TAP ID, sequence number and timestamp.

TAP capture intervals and actions can be changed on-the-fly.

Auto-incrementing 32-bit sequence numbers for every TAP permit e.g. 50k days of
a given TAP at 1 TAP/s.

Recommend that each TAP be associated with its own independent TECSTARS
task, repeating at the specified capture interval (infinite = no telemetry capture).
The capture interval can be trivially changed on demand.

Each TAP file is limited to 256 unique sequence number entries. No files limit.

Trivial segregation of collected telemetry (e.g., via INIT and OPS modes and their
corresponding folders).

Collected onboard telemetry is easily erased (via file delete operations) and
recycled if desired; a TAP’s sequence numbers can be reused, esp. given the
unique timestamp that accompanies each sequence number.

Telemetry is retrieved based on TAP ID and sequence number.

Slide 15

TECSTARS Performance On LMRST-Sat
10 bytes overhead per TAP packet. Added a 2-byte subsecond timestamp field to
cartons, to permit faster than 1Hz telemetry capture (and tagging) rates 12 bytes
total overhead per packet.

Capture interval lookup scheme permits any predefined interval at only 1byte/TAP
task: we implemented intervals from 20ms to 1 day.

All TAP tasks at the same priority except for the beacon task (higher). All other
internal tasks run higher than the TAP tasks. System performance (i.e., telemetry
capture at specified rates) degrades gracefully at high capture frequencies. CPU
utilization <30% for low-frequency (i.e., > 5s capture interval) TAPs. SCLK = 500kHz.

TAP packets range in size from 22 to 106 bytes (55% to 11% overhead, resp.).

Essentially unlimited storage via 2GB SD Card: each unique TAP consumes ca.
40-120bytes of file storage.

Removable SD Card and hex file viewer make it easy to check TECSTARS operation
by auditing the TAP files.

Requires <6KB of code and <1KB of RAM to manage 13 TAPS and their tasks.

Slide 16

TECSTARS Contributors

Andrew Nuttall

Avishai Weiss

Brendan Tseung

Brian Thompson

Bryan Lin

Cyrus Foster

Dawn Wheeler

Nicolas Lee

Randy Lum

Seiya Shimizu

Yonas Tesfaye

Andrew Kalman

Slide 17

REFERENCES
[1] “The "Maximum files per volume" given for FAT is not completely correct. FAT
is limited to 512 entries in the root folder only; subfolders are allocated with a
linked list structure and can accommodate any number of files. MS made this
distinction clear in some old Win95 training materials. The closest convenient
reference I can find right now is in the Win2000 ResKit (see "FAT16 vs FAT32", and
other places). It doesn't explicitly state that subfolders are unlimited in size, but
the ResKit always mentions the root folder when it mentions the 512 file limit.
Thanks. “ http://windowsitpro.com/systems-management/what-are-maximum-
volume-sizes-and-maximum-file-sizes-various-windows-file-systems

