Iris Deep Space CubeSat Transponder

Courtney Duncan, Amy Smith
Jet Propulsion Laboratory
California Institute of Technology
CubeSat Workshop #11
Cal Poly San Luis Obispo
2014 April 23

Iris Overview Deep Space Transponder

- CubeSat Compatible DSN Compatible
- Architecture supports
 - micro- and nano-spacecraft deep space missions
 - Direct To Earth (DTE) and Proximity Operations
- Communications and Navigation
 - Uplink and Downlink various rates CCSDS
 - Wide range of data rates needed for wide range of distances
 - Doppler, Ranging and Delta-DOR
 - No GPS in deep space even at the moon

Iris V1

Marina-2 FPGA Modem Processor Virtex 5

Power Supply Board

X-Band Receiver

X-Band Exciter

Iris V1 Antenna Board

- TX/RX Antennas
 - (also hosts spacecraft sun sensor)
- 1 on each end of S/C
 - 4 patches total
 - Independently selectable
- X-Band Frequencies
 - Receive: 7.145-7.235GHz
 - Transmit: 8.400-8.500 GHz
 - Deep Space and Near Earth
 - All channels supported
- Prototype Test Results:
 - Return Loss > 18dB
 - TX/RX Isolation > 35dB
- Prototype Mass = 40g (each)

Iris / Patch Antennas Configuration

Iris Specs

- CubeSat Compatible
 - < 0.5 U + antennas
 - $< 500 \,\mathrm{g}$
 - 12.8 W DC in for full transpond, 6.4 W receive only
- DSN Compatible
 - Navigation
 - Full duplex Doppler, Ranging
 - V2 to support Delta-DOR
 - Telecomm performance
 - 62.5 256k bps telemetry, subcarrier, low rate tones to 8 Mbps available
 - 1000 bps command, other rates available when needed
 - 25 dBm transmit, higher power available for more DC input
 - -130 dBm receive sensitivity
- Software Defined Radio
 - Future versions to be reconfigurable in flight
 - SPI interface to C&DH
 - C&DH thread performs framing and protocol
 - Multimission Telecommunications Interface (MTIF) FPGA code
 - Handles standard coding
- COTS parts with "path to flight"
- Developed January '13 March '14, first mission: INSPIRE

INSPIRE CubeSat

X-Band Patch Antennas (JPL) [two sets] **UHF Antenna Cold-Gas ACS** C&DH + Watchdog Board + Lithium UHF

Nav/Comm X-Band Radio (JPL)

Operations:

Overview:

Mass: 4.4 kg

Power Generation:

Tumbling: 13 W

Primary: DSN

Secondary (Receive only):

Volume: 3U (10x10x30cm)

3 Axis Stabilized: 20 W

Data Rate: 62-256000 bps

DSS-13 (JPL), & Peach Mountain (U. Michigan)

Deployable Solar Panels +
Structure

Electrical Power System + Battery Board

Magnetometer

Star Tracker

Processing Board

Potential Future Missions – Iris V2

(none yet approved)

- Lunar Flashlight 6U south pole of the moon
 - Iris V1, 1W to same patch antennas
- NEA Scout 6U to an asteroid ~ 0.3 AU
 - Iris @ 2W out and patch array gain antenna for downlink (~20 W DC in)
- Lunar Impactor 3U (UCSC)
 - Iris V1 with live streaming data feature
- Others in proposal or inquiry stage

Iris Downlink Rates

Iris Transponder vs. LEO Transceivers

- Why does Iris use so much power?
- LEO CubeSats
 - Half duplex transceivers and GPS
 - Limited duty cycle very low power "monitor" mode (like cellphone)
- Deep Space
 - Slant range is orders of magnitude greater
 - Higher power and highly directional gain antennas needed
 - Long, equilibrium transpond sessions for weak signals
 - Low rate data
 - Nav arcs
 - Many missions leave transmitter on throughout
- Bottom line
 - Much higher average power than CubeSat radios
 - And much higher nominal heat dissipation must equilibrate
 - Tougher environments: radiation, temperatures, longevity

DSN

- The earth station partner that makes deep space operations possible
- 34 and 70 m apertures high gains
 - Precision pointing
- Quiet front ends 45K system noise temperature
- High uplink power 20 KW
- High performance coding and other modulation schemes, > 10 dB of further improvements

Deep Space Network (DSN): Comprises DSN and Partner 34-70m tracking sites around the globe to provide continuous communication and navigation support

The Big Picture

13 SCK-13

DSN ConOps

Sequence

- No "real time" handshake possible in "deep" space due to light time distances
- S/C transmits DSS slews to find S/C on plane of sky
- DSS locks on downlink at BLF uncoherent
- DSS starts uplink sweeps through uplink range
 - S/Clocks on uplink follows coherently, downlink re-locks carrier
 - Uplink sweeps to operating frequency
- DSS downlink process
 - Locks on subcarrier
 - Demodulates symbols
 - Decodes into bits
- S/C uplink process similar
- DSS processes uplink commands and downlink data
- DSS collects Doppler data
- Ranging (tones or PN) or DOR tones optional
- Not your LEO CubeSat Beacon, Ping and Query process!
 - Or receive-only GPS

DSN

- World Class Facility
 - Decades of research and development to address "enormous distance" and quality of service issues
 - Backends for data, command, and navigation
 - Expertise at JPL for these plus mission design
- Your "DSN" should work like this
 - For interoperability
 - Cooperation and assistance in deep space

Iris Architecture: Not Just X-Band DTE

- RF boards for
 - Ka-Band high bandwidth and gain for future missions
 - UHF & S-Band proximity ops at planets, in formations
 - "Exciter only" version can drive TWTs
- Protocol (firmware / software) for
 - Prox Ops partners with other Iris, Electra, or UST
 - DTE
 - Earth Orbit high rate
- Various antenna options
- Reduced DC input power baseband in development
 - PS, PA, CPU
 - 15 W system goal
- JPL Heritage and Relatives
 - UST, Electra MTIF, COVE, LMRST-Sat

Iris (Ιρις) – (not an acronym)

The goddess Iris is associated with: communication, messages, the rainbow, new endeavors