ARAPAIMA

Application for RSO Automated Proximity Analysis and IMAging (ARAPAIMA): Development of a Nanosat-based Space Situational Awareness Mission

K. Harris, M. McGarvey, H. Chang, M. Ryle, T. Ruscitti, B. Udrea, and M. Nayak

Overview

AND AROUNT

- Introduction
- Mission success criteria
- Concept of operations
- 6U Cubesat design
- Subsystems
- Conclusions

University NanoSat Program

- Embry-Riddle Aeronautical University
 - "Prime Contractor"
 - Overall design procurement and integration
 - PI: Bogdan Udrea
- University of Arkansas
 - Nanosat propulsion system
 - Co-I: Adam Huang
- Red Sky Research LLC
 - Science
 - Co-I: Mikey Nayak

300-600 Ft. 150-300 Ft. 0-150 Ft. Addresses 3 of 15 prioritized USAF space capabilities:

- 4. Space situational awareness
- 8. Satellite operations
- 10. Offensive space control

Advances Rendezvous & Proximity Ops (RPO) technology

Overview

- Introduction
- Mission success criteria
- Concept of operations
- 6U Cubesat design
- Subsystems
- Conclusions

ARAPAIMA is a 6U cubesat which autonomously maneuvers in close proximity to a Resident Space Object (RSO) for visible, IR, and 3D imaging.

Mission objectives:

- Determine the 3-D shape of the RSO without previous knowledge
- Autonomously navigate and safely maneuver in close proximity to the RSO, in low earth orbit
- Estimate the attitude state of the RSO by remote observation

Science Problem Statement

- Perform relevant space-based SSA with a nanosat
- Without a priori knowledge of RSO shape or attitude:
 - Assess the capability of the visual and visual-aided navigation algorithms to:
 - 1. Extract 3D shape knowledge of the RSO
 - 2. Estimate the attitude state of the RSO
 - Perform infrared radiometry science
- Execute near-optimal trajectories to maximize space-based surveillance of the RSO in low earth orbit
- Validate on-board autonomous relative trajectory
 - Planning
 - Control
 - Execution

Mission Success Criteria

Minimum success

Take an unresolved image of the RSO and downlink it to the ground station.

Full success

Maneuver into the proximity of the RSO, with preloaded commands, and take an image in which the RSO occupies at least 15% of the pixels of the visible and IR spectrum cameras.

Extended mission success

On-board planning and execution of maneuvers to acquire a relative orbit with respect to the RSO and use the LRF to generate a 3D point cloud.

Imaging Results - Simulation

Unknown RSO: Upper stage with attachment of interest

D

¢

3D Imaging Results - Simulation

With robust RSO attitude solution, LRF-only sensor can recover shape knowledge of unknown RSO.

LRF-only point clouds: 89,000 / 11,000 / 3,500 strikes

Shape reconstruction after: 32 / 12 / 4 hours of surveillance

- Introduction
- Mission success criteria
- Concept of operations
- 6U Cubesat design
- Subsystems
- Conclusions

Overall Concept of Operations

Relative Orbit Acquisition (1/2)

Propellant optimal trajectories for acquisition of a circular relative orbit. (Each color represents a different initial in-track distance.)

Relative Orbit Acquisition (2/2)

ARAPAIMA prior to maneuver to 250m relative orbit

Science Concept of Operations

- Introduction
- Mission success criteria
- Concept of operations
- 6U Cubesat design
- Subsystems
- Conclusions

ARAPAIMA Functional Diagram

ARAPAIMA Cubesat

AERONAUTICAL UNIVERSITY

Structures: Model

Overview

AND ANO UNIT

- Introduction
- Mission success criteria
- Concept of operations
- 6U Cubesat design
- Subsystems
- Conclusions

100mN OMT

• 8 x 10mN RCS thrusters in 4 clusters

Propulsion System

HFC-236fa, $I_{sp} = 47s$

•

On-Board Computer

- Two independent Versalogic
 C/104 Tiger boards
 - Manages all subsystems including payload.
 - Payload independence ensures payload has enough data resources to be mission effective without conflicting with other subsystems

Communications

- Basic Information
 - Set elevation mask: 10 degrees
 - Propagation range: 2880 km
- Modulations:
 - Uplink: GFSK (2 bits per symbol)
 - Downlink: O-QPSK
- Data Rates
 - Uplink: 9600 bps
 - Downlink: 1.3 Mbps

- Frequencies
 - Uplink: 450 MHz (UHF)
 - Downlink: 2.25 GHz (Sband)
- Uplink Budget:
 - Carrier to Noise Ratio: 54.85 dB-Hz
 - Data Link Margin achieved:
 9.03 dB
- Downlink Budget:
 - Carrier to Noise Ratio: 71.19 dB-Hz
 - Data Link Margin achieved:
 6.35 dB

Ground Operations

Thermal

- Static Analysis Performed:
 - Single and 6 node analysis
 - Rectangular shape w/o solar panel configuration
 - More simple and understandable
 - Examined using extreme IR and albedo values
- Results:
 - Hot Case ~85° ±1° C
 - Cold Case ~ 11° ±1° C
 - Results are shown with an 11°C margin

Electrical Power System

- Solar panels provide power for both system and charging of battery
- All power is routed through switch controlled by on board computer
- Three supply voltages of 12V (Direct from battery), 5V, and 3.3V
- Silicon Solar panels and Lithium Ion batteries are best choices so far

Payload Testing

- Testing:
 - Aluminum plate, solar panel,
 Mylar, fine steel mesh
 - Incidence angles: 0 °- 45°
 - Distance: 5m 30m
 - Varying light conditions

Payload Emulator Test Results

- Analyzed using Gaussian and Weibull distribution
- Bloom imaging
- Error characterization for LRF modeling:
 - Pulse dilation
 - Influence of the material reflectance

This testing allows for not only testing of the individual components but also the payload as a whole

30

Further Testing

- The next step is to use the payload emulator to simulate point clouds and images of moving models.
 - Models include, Envisat, X37-b, Delta IV upper stage, among others.

Feature Detection

Roll, Pitch, & Yaw Approximations

Attitude Dynamics Modeling

- External disturbance torques:
 - Aerodynamic
 - Gravity gradient
 - Residual magnetic moment
 - Solar radiation pressure
- Internal disturbance torques:
 - Reaction wheel imbalance
 - Propellant slosh
 - Solar panel vibration
 - Orbital maneuver thruster misalignment

Aerodynamic Disturbance Torques

- Direct simulation Monte Carlo (DS3V)
 - Parameters: O – 94%, N – 6%, T=1491K, n=3.8x10¹⁴#/m³, v=7.6km/s, mfp=27.33km

M_v, Nm

x 10

6

2

150

100

β, deg

50

0

M_c, Nm

50

0

α, deg

-50

Conclusions/Project Timeline

Review	<u>Months</u> from Kickoff	Date	Expectations (Mechanical, Electrical, Software)
System Concept	2	12 Mar 13	Mission concept
System Requirements	4	30 Apr 13	CAD model, electrical board concept, software/hardware identified
Preliminary Design	8	16 Aug 13	Physical model, breadboards, high-level block diagram
Critical Design	14-16	Feb-Apr 14	Refined CAD, elegant breadboard, software 1.0
Engineering Design	20	Aug 14	Engineering unit, flight-ready configuration board, software 2.0
Flight Competition	25	Jan 15	Flight CAD, flight-ready configuration board tested, software 3.0

Current Supporters

THE AIR FORCE RESEARCH LABORATORY LEAD I DISCOVER I DEVELOP I DELIVER

Software for Space, Defense & Intelligence

WIND RIVER

AFOSR

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

dSPACE

COMPUTER IMAGING PRODUCTS

ORID

ANT CO

Questions?

