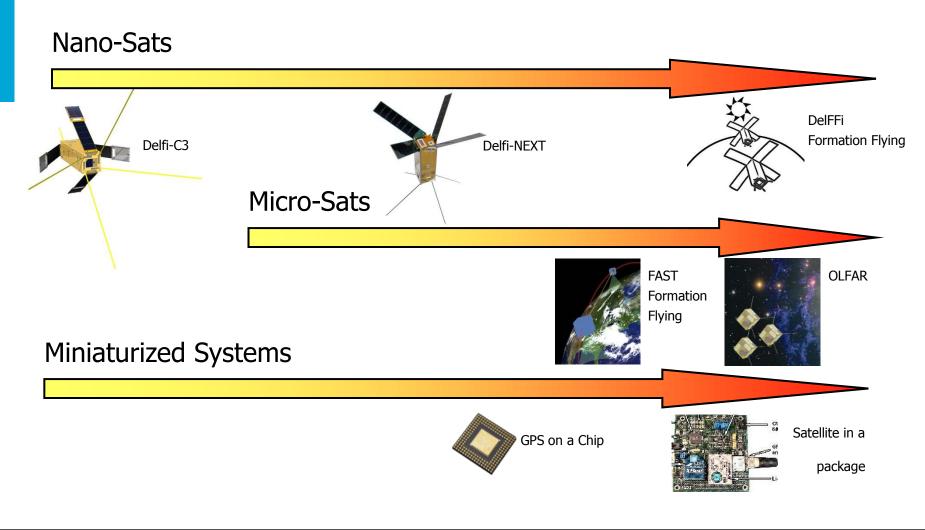

From Single to Formation Flying CubeSats: An Update of the Delfi Programme Jian Guo, Jasper B<u>ouwmeester & Eberhard Gill</u>



Outline

- Introduction
- Delfi-C³ Mission
- Delfi-n3Xt Mission
- Lessons Learned
- DelFFi Formation Flying Mission
- Conclusions

Introduction



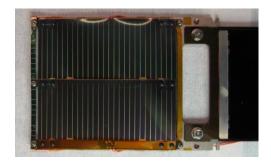
Delfi-C³ Mission Overview

- First Dutch university satellite
- Developed by students in SSE
- Piggyback launch 28th April 2008

Key Specifications		
Dimensions	100x100x300 mm ³	
Mass	2.2 kg	
ADCS	Passive magnet control	
CDHS	I2C bus	
EPS	Decentralized, each PCB protected by microcontroller	
ΤΤС	Uplink UHF @ 435 MHz, 600 bps FSK; Downlink VHF @ 145 MHz, 1200 bps BPSK	
Thermal	Passive	
Payload	Autonomous wireless sun sensors, thin-film solar cells, transponder	

Delfi-C³ Mission Payloads

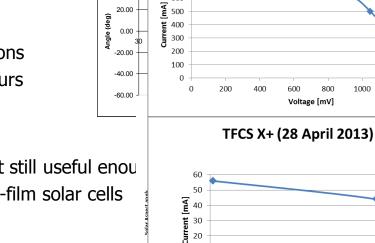
AWSS		
Sensor Type	Quadrant Sun Sensor	
Mass	80 g	
Dimensions	60x40x20 mm (lxwxh)	
Field of view	90° x90°	
Inaccuracy	~ 1°	
Data rate	1 Hz	



- Thin-film solar cells
 - 50% cost reduction
 - 50% increased power to mass performance

Dutch Space

an EADS Astrium company


Delfi-C³ Mission Results A full m

Mission

- So far more than 5 years of operations
- 66 students and ~ 300 radio amateurs
- Payload
 - Telemetry from all payload received
 - AWSS Z+ working, Z- little data, but still useful enou
 - More than 53,000 I-V curves of thin-film solar cells • harvested
- Platform

TUDelft

- All 4 solar panels and 8 Rx/Tx antennas deployed
- All subsystems fully operational
- Rotation rate decrease from 5.06 °/s after injection to 0 0.7 °/s
- OBC/subsystems crash occasionally due to onboard difference in clock frequencies (bus issue)
- Reboot usually completed within a few seconds (but worst case after next eclipse)
- Downlink always comes back operational

20

10 0

200

400

600

Voltage [mV]

800

1000

1200

450

800 700 600 **TFCS X+ (28 April 2008)**

1000

1200

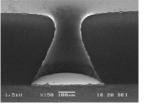
1400

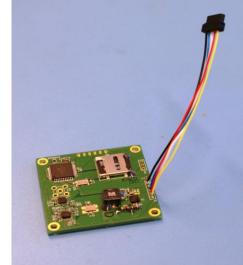
Alpha

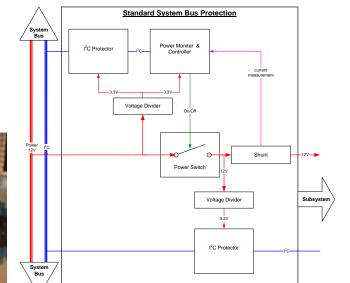
Beta

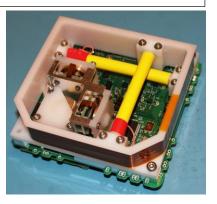
Delfi-n3Xt Mission Overview

Education > 60 students on mission Technology demonstration Partners from Dutch space sector Innovation Improvement of bus platform Research >20 scientific papers




Delfi-n3Xt Mission Payloads



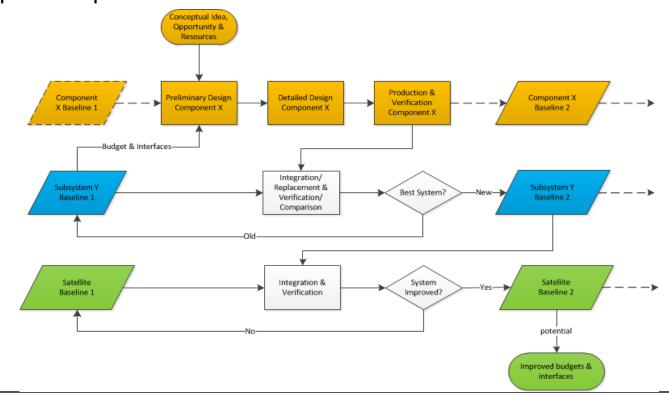


Delfi-n3Xt Mission Platform

ADCS	ADCS Subsystem		
Parameter	Input		
Mass	330 g		
Power	1600 mW (max)		
Volume	90X90X34.6 mm ³		
Data	1 Kbits, 2 Hz		

UNIVERSITEIT TWENTE.

Challenge the future 9


Lessons Learned People

- Experienced engineers are the key for innovation
- Young and dynamic engineers are most motivated for innovation, but....
- An ideal team shall include both of them
- The innovation team shall have hands-on experience on spacecraft development
- CubeSat could be a good way for the quick training of engineers
- A stable core team shall be maintained

Lessons Learned Process

- Based on documentations or models, rather than people
- Stepwise improvement

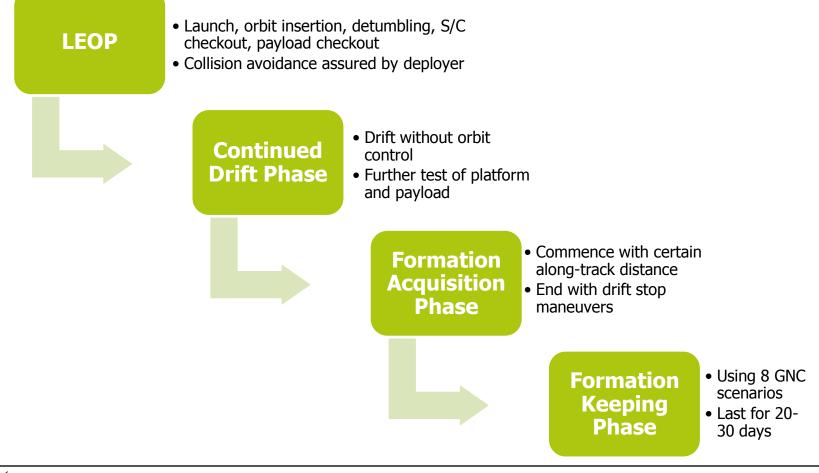
Lessons Learned Design

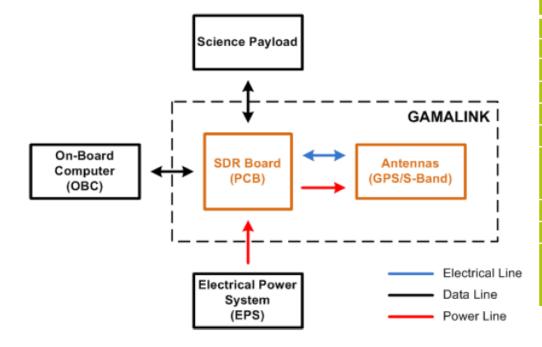
Subsystem Contribution to Satellite Failures 50 40 _10 _10 Contribution 0 0 0 00 AD&C Pay, OBC EPS M&S, TCS TT&C 10 0 2 3 10 0 1 5 6 8 9 Time in Orbit [years]

Buy components at beginning, but never rely on buying

DelFFi Formation Flying Mission QB50 and DelFFi

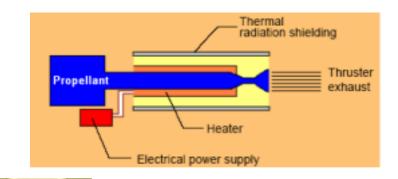
• QB50

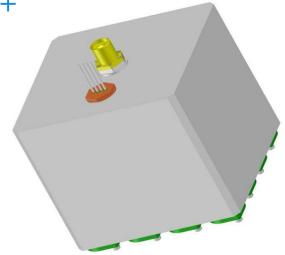

- An International Network of 50 double or triple-unit CubeSats in Low-Earth Orbits for Lower Thermosphere and Re-Entry Research
- Supported by European Commission under FP7 Space
- Launch in 2015 by single launcher
- DelFFi
 - An integrated part of QB50
 - Adjustable spatial scales for multi-point measurements of low thermosphere
 - Demonstration of autonomous formation flying using two CubeSats
 - Hands-on experience for students

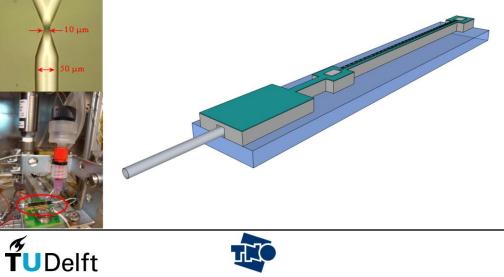


DelFFi Formation Flying Mission Concept of Operations

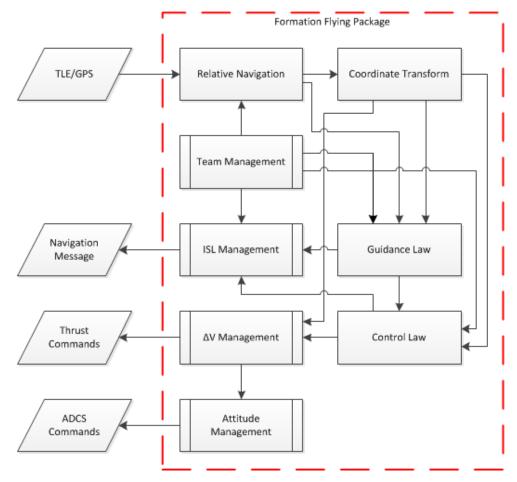
DelFFi Formation Flying Mission GAMALINK



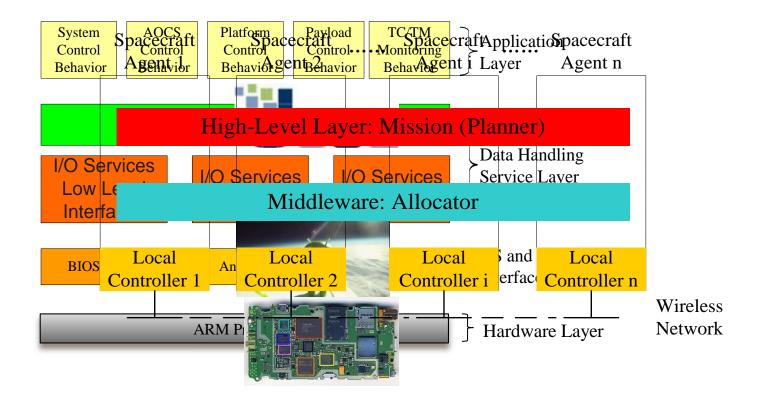

Parameter	Value
Frequency	2.45 GHz (S-band)
Bandwidth	40 MHz
Positioning precision	5 m
PCB size	80×80×10 mm ³
PCB mass	< 100 g
Number of antennas	4 (3 S-band + 1 GPS)
Antenna size	~ 15×15 mm ² (S-band)
	~ 20×20 mm ² (GPS)
Data interface	I ² C, UART
Supply voltage	3.3 V
Power consumption	< 1.5 W (transmitting)
	< 200 mW (S-band receiving)
	< 50 mW (GPS receiving)



DelFFi Formation Flying Mission Micro-Propulsion System - µPS+



Parameter	Value	
Specific Impulse	100 s	
System Mass	459 g	
Propellant mass	60 g	
Number of CGG	16	
Chamber	7.6 bar	
Pressure	7.0 Dai	
Max thrust	9.5 mN	
Gas temperature	573 K	
Dimension	90×90×80 cm ³	


DelFFi Formation Flying Mission Formation Flying Package

Challenge the future 17

DelFFi Formation Flying Mission Multi-Agent based FF Controller Experiment

Conclusions

- Delfi-C³ is a full success beyond all expectations!
- Delfi-n3Xt satellite and ground station are ready for countdown.
- DelFFi will demonstrate formation flying with CubeSats and is a significant step towards networks of small satellites.
- The lessons show that the reliability of critical subsystems shall be guaranteed using e.g. SPFF design.
- (Soft/Hard)Redundancy and a reliable databus are essential for a success CubeSat mission

