

## Air Force Institute of Technology

The AFIT of Today is the Air Force of Tomorrow.



# Electrospray Mission Modeling for CubeSats

Capt Angie Hatch, USMC Dr. Jon Black SmallSat Pre-Conference Workshop 2013







The AFIT of Today is the Air Force of Tomorrow.

- AFIT Bus
- Electrospray Thruster Mission
- Mission Modeling Tool
- Mission Analysis
- Conclusions



Artist Rendering of 3U CubeSat<sup>1</sup> (credit Clyde Space)



### **AFIT Bus Design**

AFFIT

The AFIT of Today is the Air Force of Tomorrow.



Software Development



Vibration testing CubeSat inside Test-POD



Hardware Development



**Thermal Vacuum Testing** 



Chassis design and build



## AFIT 3U Bus V2



#### The AFIT of Today is the Air Force of Tomorrow.

| Subsystems                   | AFIT 3U Bus                           |  |
|------------------------------|---------------------------------------|--|
| Command and Data<br>Handling | Power 0.8 W, Data storage 128 KB.     |  |
| Attitude                     | Gyros, accelerometers, sun sensors,   |  |
| Determination                | magnetometers, GPS. Determination     |  |
|                              | within 6 deg.                         |  |
| Attitude Control             | Reaction wheels have 13.5 mN-s        |  |
|                              | momentum storage, 10 deg/s slew rate. |  |
|                              | Magnetic torque coils.                |  |
| Power                        | Shuttlecock config: 7.2 W average     |  |
|                              | power.                                |  |
|                              | Bus load power: 2.58 W standby, 4.86  |  |
|                              | W ADACS on                            |  |
|                              |                                       |  |
| Solar Panels                 | Emcore BTMJ solar cells, efficiency   |  |
|                              | 22%, 3.5 W per panel.                 |  |
| Radio                        | Receive 0.2 W, Transmit 6 W. U/L 4.8  |  |
|                              | kbs, D/L 9.6 kbs.                     |  |
| Thermal Management           | Battery heater.                       |  |
| Payload Envelope             | 1.5U: 15 by 10 by 10 cm.              |  |
|                              | 1.27 kg.                              |  |



AFIT 3U Bus EDU



## **Propulsion**



The AFIT of Today is the Air Force of Tomorrow

- Allows swarming missions and formation flying
- Can provide orbit maintenance
- Meet SWAPS requirements
- Electrospray thrusters are a promising option for CubeSats
  - High power, high delta V
  - Miniaturization



MIT iEPS (Ion Electrospray Propulsion System)<sup>3</sup>



Busek Electrospray Colloid Thruster<sup>2</sup>



JPL Microfluidic Electrospray Propulsion (MEP) Thruster (courtesy of JPL)



#### **AFIT Bus with Propulsion**



The AFIT of Today is the Air Force of Tomorrow.

# Research Objective: Model power scenarios for AFIT 3U Bus with array of JPL MEP thrusters

- Requirements
  - Provide enough power for thruster operation
    - Solar Arrays
    - Sun Synchronous Orbit
    - Batteries
  - Better precision for pointing maneuvers
    - Star Tracker



Pumpkin, Inc. 56 W Solar Array<sup>4</sup>



## **Mission Modeling Tool**



The AFIT of Today is the Air Force of Tomorrow.

- Upgraded previous AFIT simulation model tool (C2BMMT) to MMT
- Quickly analyze several satellite subsystems over a simulated period of time
- MATLAB generates task lists and imports STK reports into Simulink model that represents spacecraft
- STK orbit propagation is significantly faster than Simulink





## **Mission Modeling Tool**



The AFIT of Today is the Air Force of Tomorrow.



MMT Framework<sup>5</sup>



## **Mission Modeling Tool**



The AFIT of Today is the Air Force of Tomorrow.





## **MMT Development**



- Added Thruster to MMT
  - Astrogator used to simulate maneuvers in STK
  - Created "Maneuver" report
  - Thruster added to Simulink model and output telemetry
- Updated bus parameters for AFIT Bus
- High power payload
  - Added option for only on when in sunlit conditions
- Sun Safe and Survival Mode
  - Updated based on Bus Voltage
- MATLAB GUI Updates for Task List Generation
- Ability to use "Default Parameters" for Task Lists



## **Mission Assumptions**



- Thrusters
  - Array of eight MEP thrusters.
  - Primary configuration 5 on one end of spacecraft, 3 on the other end.
  - Backup configuration 4 thrusters on each end of spacecraft.
  - Each thruster requires 7 W in primary mode, 5 W in standby mode.
- Primary launch for planning purposes is 600 km SSO
- Mission has 1 year lifetime



#### **Characterize SSO**



The AFIT of Today is the Air Force of Tomorrow.

- Analyze different orientations at different LTANs
  - As secondary payload, may not be placed into optimal dawn-dusk orbit

#### Sun Aligned



#### Sun Constrained



#### Nadir Aligned





### **OAP vs LTAN**



#### The AFIT of Today is the Air Force of Tomorrow.



| Profile         | Max mean<br>OAP | Min mean<br>OAP | Average mean OAP |
|-----------------|-----------------|-----------------|------------------|
| Sun Aligned     | 50.9 W          | 33.6 W          | 39.0 W           |
| Sun Constrained | 49.7 W          | 19.9 W          | 32.0 W           |
| Nadir Aligned   | 13.6 W          | 3.6 W           | 9.4 W            |



-----

## **OAP vs Inclination**



#### The AFIT of Today is the Air Force of Tomorrow.



| Profile            | Max mean OAP | Min mean<br>OAP | Average mean OAP |
|--------------------|--------------|-----------------|------------------|
| Sun Aligned        | 38.7 W       | 33.8 W          | 35.7 W           |
| Sun<br>Constrained | 30.0 W       | 22.0 W          | 26.6 W           |
| Nadir Aligned      | 17.0 W       | 12.2 W          | 14.6 W           |

# Pointing and $\Delta V$ Experiments



- Pointing experiments
  - Characterize performance and control authority of thruster
  - Perform single and multiple axis rotations
  - Multiple thrusters will need to be in active or standby mode
  - Finished within approximately 30 days
- ΔV experiment
  - Prove thrusters can achieve 1 km/s of  $\Delta V$  on a CubeSat
  - Multiple thrusters will need to be used in active mode
  - Accomplished within remaining satellite's lifetime



#### **Generic Power Scenarios**



#### The AFIT of Today is the Air Force of Tomorrow.

| Scenario    | Thrusters Turned On | Thrusters in Standby |
|-------------|---------------------|----------------------|
| Scenario 1  | 5, always on        | 0                    |
| Scenario 2  | 4, always on        | 0                    |
| Scenario 3  | 3, always on        | 0                    |
| Scenario 4  | 2, always on        | 0                    |
| Scenario 5  | 1, always on        | 0                    |
| Scenario 6  | 5, only when sunlit | 0                    |
| Scenario 7  | 4, only when sunlit | 0                    |
| Scenario 8  | 3, only when sunlit | 0                    |
| Scenario 9  | 2, only when sunlit | 0                    |
| Scenario 10 | 5, only when sunlit | 2, only when sunlit  |
| Scenario 11 | 4, only when sunlit | 2, only when sunlit  |
| Scenario 12 | 3, only when sunlit | 2, only when sunlit  |
| Scenario 13 | 2, only when sunlit | 2, only when sunlit  |
| Scenario 14 | 2, only when sunlit | 2, always on         |
| Scenario 15 | 2, always on        | 2, always on         |

Sun Constrained orientation at Maximum (0600 LTAN), Mean (1500 LTAN), and Minimum (1200 LTAN)



#### **Generic Power Scenarios**



The AFIT of Today is the Air Force of Tomorrow.

| Scenario    | Final DoD   | Final DoD   | Final DoD   |
|-------------|-------------|-------------|-------------|
|             | (0600 LTAN) | (1500 LTAN) | (1200 LTAN) |
| Scenario 1  | 0%          | 82.92%      | 82.93%      |
| Scenario 2  | 0%          | 82.90%      | 82.93%      |
| Scenario 3  | 0%          | 82.88%      | 82.92%      |
| Scenario 4  | 0%          | 40.80%      | 82.91%      |
| Scenario 5  | 0%          | 0%          | 27.72%      |
| Scenario 6  | 0%          | 82.91%      | 82.92%      |
| Scenario 7  | 0%          | 20.00%      | 82.92%      |
| Scenario 8  | 0%          | 0%          | 82.92%      |
| Scenario 9  | 0%          | 0%          | 44.22%      |
| Scenario 10 | 9.19%       | 82.92%      | 82.92%      |
| Scenario 11 | 0%          | 82.92%      | 82.93%      |
| Scenario 12 | 0%          | 63.31%      | 82.92%      |
| Scenario 13 | 0%          | 0%          | 82.92%      |
| Scenario 14 | 0%          | 82.88%      | 82.92%      |
| Scenario 15 | 0%          | 82.89%      | 82.92%      |



#### Conclusions



- Pointing experiments
  - Scenarios 13 and 14 (two thrusters on while two are in standby)
  - Scenario 13 does not have an increasing DoD trend so is a better option
- ΔV experiment
  - Thrusters should only be turned on when in sun-soak conditions
  - Further analysis to determine what combination of thrusters should be used to reach 1 km/s  $\Delta V$



### **∆V** experiment



- ΔV experiment
  - MMT used to analyze how much time and propellant to achieve 1 km/s
  - Find optimal combination of thrusters for ΔV experiment
  - Assumptions: thrusters fire only in sun-soak, thrust vector along center of mass
  - Sun constrained orientation at 1500 LTAN to simulate mean conditions



#### **∆V** experiment



The AFIT of Today is the Air Force of Tomorrow.

- Case 1: Reached Sun safe mode in 21.8 days. Recharge segments required in-between maneuver segments.
- Case 2: Reached Sun safe mode in 65.3 days. One recharge segment required
- Case 3: Never entered sun safe mode

3/4 combination provides shortest time (177.7 days) and least fuel for primary configuration

| Case                   | Total Time  | Total ∆V   |
|------------------------|-------------|------------|
| Case 1: 5<br>thrusters | 147.16 days | 0.743 km/s |
| Case 2: 4<br>thrusters | 106.84 days | 0.605 km/s |
| Case 3: 3<br>thrusters | 94.46 days  | 0.455 km/s |

| Combinations of<br>Thrusters | Total Time  |
|------------------------------|-------------|
| 5/3                          | 200.51 days |
| 4/4                          | 168.84 days |
| 4/3                          | 188.84 days |
| 3/4                          | 177.74 days |
| 3/5                          | 202.97 days |



#### References



- Killian, Mike. "Artist Conception of a CubeSat in Space." 6 Aug 2013. <u>http://www.americaspace.com/?attachment\_id=13101</u>
- 2. Busek Co, Inc. "Busek Electrospray Thrusters." 5 Aug 2013. http://www.busek.com/index\_htm\_files/70008500\_revE.pdf
- 3. Space Propulsion Laboratory Massachusetts Institute of Technology. "ion Electrospray Propulsion System for CubeSats (iEPS)." 5 Aug 2013. <u>http://web.mit.edu/aeroastro/labs/spl/research\_ieps.htm</u>
- 4. Reif, Adam, V.H. and Kalman, A., "Recent Advances in the Construction of Solar Arrays for CubeSats," CubeSat Summer Developer's Workshop, August 2010.
- 5. Andrews, B., "A Colony II CubeSat Mission Modeling Tool,", Master's thesis, Graduate School of Engineering and Management, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 2012.



#### **Questions?**



#### The AFIT of Today is the Air Force of Tomorrow.

