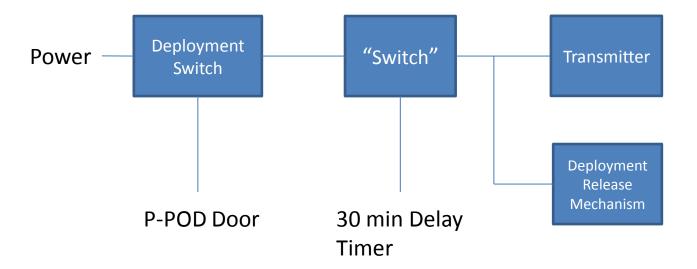
Understanding System Safety: Hazards, Controls, Inhibits, and Independence

Dr. Gerry Shaw
Senior Research Engineer
SRI International



CubeSat Design Specification rev. 12 08/01/2009

- 2.3.1 No electronics shall be active during launch to prevent any electrical or RF interference with the launch vehicle and primary payloads...
- 2.3.2 The CubeSat shall include at least one deployment switch to completely turn off satellite power once actuated.
- 2.4.2 All deployables such as booms, antennas, and solar panels shall wait to deploy a minimum of 30 minutes after the CubeSat's deployment switch(es) are activated from P-POD ejection.
- 2.4.3 RF transmitters greater than 1 mW shall wait a minimum of 30 minutes after the CubeSat's deployment switch(es) are activated from P-POD ejection.

Compliant Architecture ?

Assess Hazard

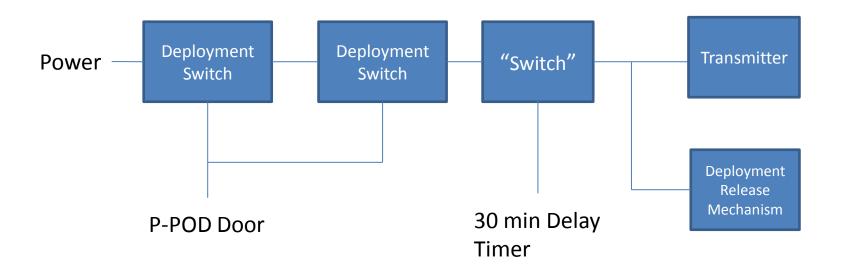
Hazard Severity Category		Potential Consequences			Probability*					
		Personnel Illness/Injury	Equipment Loss (\$)	Unit Downtime	Data Compromise		В	С	D	E
I	Catastrophic	May cause death.	> 1,000,000	> 4 months	Data is never recoverable or primary program objectives are lost.					
II	Critical	May cause severe injury or severe occupational illness.	200,000 to 1,000,000	2 weeks to 4 months	May cause repeat of test program.					
Ш	Marginal	May cause minor injury or minor occupational illness.	10,000 to 200,000	1 Day to 2 Weeks	May cause repeat of test period.					
IV	Negligible	Will not result in injury or occupational illness.	< 10,000	< 1 Day	May cause repeat of data point, or data may require minor manipulation or computer rerun.					
Risk Priority:		Unacceptable	Waiver required		Operation permissible					

[&]quot;Probability refers to the probability that the potential consequence will occur in the life cycle of the system (test/activity/operation). Use the following list to determine the appropriate Risk Level.

Threshold Level Probability

DESCRIPTION**		Value	Specific Individual Item	Fleet or Inventory***		
A	Frequent	8X10 ⁻²	3X10 ⁻¹	Likely to occur repeatedly	Continuously experienced	
В	Reasonably probable		3X10 ⁻²	Likely to occur several times	Will occur frequently	
~		8X10 ⁻³	******			
C	Occasional	8X10 ⁻⁴	3X10 ⁻³	Likely to occur sometime	Will occur several times	
D	Remote		3X10 ⁻⁴	Unlikely to occur, but possible	Unlikely, but can reasonably be expected to occur	
		8X10 ⁻⁵				
E	Extremely Improbable		3X10 ⁻⁵	Very unlikely to occur, but still possible.	Unlikely to occur, but possible	

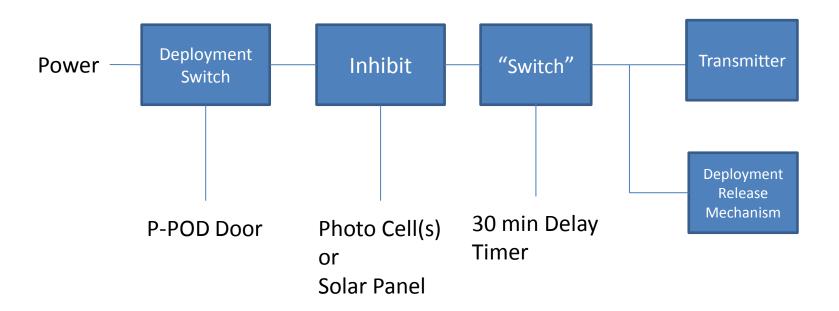
Hazard Mitigation


Hazard Control Precedence...

- Change design to eliminate or minimize hazards
 - For example: Reduce transmitter power
- Add engineered safety features
- Incorporate safety devices (inhibits)
 - For example: Introduce Inhibits
- Provide warning devices
- Develop procedures and training

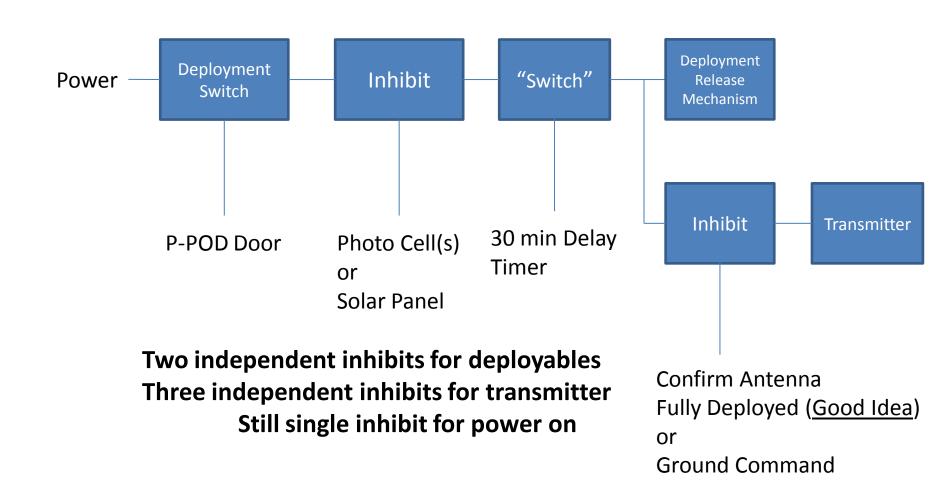
Inhibits

 Physical devices that interrupt the "power path" needed to turn on a potentially hazardous device

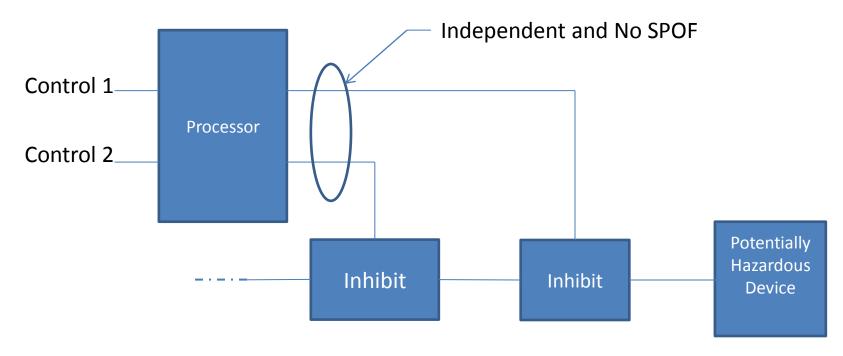

Two Series Deployment Switches

Two independent inhibits

- Increased safety
- Double jeopardy for power on


Two Series Deployment Switches

Two independent inhibits


- Increased safety
- Still single inhibit for power on

Transmitter Requires Additional Inhibit

No Single Point of Failure

 Multiple inhibits controlled by a single processer could have common failure mode

Summary

Identify Hazards

1. Identify hazards and causal factors using a systematic approach.

Assess Hazard Risk

2. Assess severity and probability of hazard mishap risk.

Identify Safety
Measures

3. Identify mitigation measures (safety design requirements).

• Influence design, order of precedence

Reduce Hazards

- 4. Reduce hazard risk to an acceptable level.
 - Make inhibits work for both safety and mission assurance

Contacts:

Dr. Gerry Shaw gerald.shaw@sri.com (805) 542-9330 x-108

Dr. Mark Tinkle mark.tinkle@sri.com (805) 542-9330 x-106

