

Design and Functional Validation of a Mechanism for Dual-Spinning CubeSats

Eric Peters, Pratik Davé, Ryan Kingsbury, Meghan Prinkey, Anne Marinan, Evan Wise, Christopher Pong, Kerri Cahoy, William Thalheimer, Devon Sklair, Luis Orrego

10 August 2013

This work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contact FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Outline

- Overview / Motivation
- Scanner assembly design
- Structural validation
 - Physical models
 - Structural testing of rotor/shaft interface
 - Notes on tolerance rings
- Thermal validation
 - Test plan
 - Results from thermal testing

Motivation

- Dual-spinning CubeSats
 - Payload scans Earth cross-track for coverage
 - Bus fixed in LVLH frame for pointing
- MicroMAS: Micro-sized
 Microwave Atmospheric Satellite
 - 3U dual-spinning CubeSat for remote weather sensing
 - 1U passive microwave radiometer payload, MIT Lincoln Laboratory
 - 2U bus, MIT Space Systems Laboratory
 - Scheduled to launch in winter 2013-14
 - Talk on Thurs. Aug 15th @ 10:30am

Design Requirements

- Scanner assembly must:
 - Fit in 10cm x 10cm x 3.5 cm volume
 - Rotate 1U payload at ~1 Hz (60 rpm)
 - Have angular position knowledge of < 6 arcmin (0.1 deg)
 - Have 8+ electrical feed lines for power/data transfer between bus and payload
 - Operate continuously in space environment

COTS Hardware

Bearing

 NHBB RI-3026 thin section bearing with vacuum-rated cage and lubricant

Encoder

- MicroE M1500V vacuum-rated sensor
- Glass rotary grating disc with 7200 counts per revolution (0.01 degrees per count)

Rotor/Stator

 Aeroflex Z-0250-050-3-104 zero-cogging brushless DC motor

Slipring

• Aeroflex CAY-1398 with 12 lines for power/data transfer

Design Overview

Structural Validation of Scanner Assembly

3D Print Unit	 Check volume Check fit Verify assembly procedures 	
Engineering Design Unit	 Verify mass properties Verify machining procedures Early functional testing with non- flight components 	
Rotor/Shaft Test Units	 Test/prove different mating methods work for interface 	
Engineering Test Unit	 Verify custom parts function, cost, schedule Functional test with flight-like components 	

- Concern: thermal expansion, loss of contact between rotor (stainless steel) and rotor shaft (aluminum)
- Tested several mating methods

	Ероху	Tolerance Ring	Press-Fit
Advantages	 Flight heritage (ACIS instrument, bond held with ΔT of -200 °F) 	 Robust to thermal expansion/contraction Known torque and radial load capacities 	 No additional parts needed Simple to design
Disadvantages	 High CTE Estimated elastic modulus Requires careful application, curing 	 No prior experience No flight heritage Tests needed to get groove fit right 	 Loss of fit with thermal variation Requires additional equipment
Tests Performed	Torque testing	Torque testing	Thermal testing

- **Purpose:** Test strength of rotor/shaft interface
- Use peak torque provided by motor (4 in-lb) on epoxy and tolerance ring
- **Setup:** Used identical flight-like shaft + rotor ring sets

Shaft

- Cut grooves for epoxy
- Found deeper groove needed for tolerance ring

Ring

- A513 mild steel
- Smooth internal surface

Shaft + rotor ring test rig

Torque Testing Setup

- 1/2"-13 bolt secured through bore in center of test shaft
- Flat washers placed between shaft-nut and shaft-bolt
- Fastener installation torqued to 120 in-lb
- Ring held by vise while torque applied to the bolt

- First attempt, tolerance ring forced out of the groove
 - Initial 0.005" groove depth too shallow
- Machined new shaft with groove depth of 0.022"
 - Designed to fully retain the 0.020" un-corrugated portion and ¼ of the corrugated portion
- Trimmed length of ring to maintain gap of 0.060" between edges
 - Gap of 0.040" 0.080" recommended by product engineers

Image from: USA Tolerance Rings

Torque Testing Results

- First, test to peak torque provided by motor during nominal operations (4 in-lb)
 - If successful, then test to point of failure
- Results:
 - Both epoxy and tolerance rings survived up to 65 in-lb torque
 - Point of failure was not reached for either epoxy or tolerance ring
 - At 65 in-lb, lock washers used in test apparatus dug into aluminum shaft
 - Test was halted and not continued to higher torques
- Note:
 - Tolerance ring: tested to less than max torque capacity of rings (65 in-lb test << 675 in-lb predicted capacity)
 - Epoxy: tested to much less than epoxy shear strength at ~25°C (tested 44 psi << rated 3800 psi)

Thermal Validation of Scanner Assembly

Thermal Testing

 Purpose: Characterize encoder + motor assembly performance over operational/survival temperatures in vacuum

- Analog output from encoder
 → Oscilloscope
- Digital output from encoder to motor controller → PC
- Temperature data w/ 9 x 100-Ω RTDs
 → Agilent DAQ

Thermal Test Plan

Encoder specified operational temperature range = [0,70] °C Predicted on-orbit temperature range = [-5,25] °C

Scenario	Chamber S	State	Test Procedure
TS Test Setup	Room Pressure & Temperature		 Prep chamber, test rigs, articles, + sensors Check function + calibrate test articles + sensors Collect benchmark data
T-0 Functional Checks	Ambient Vacuum (25 °C)		 Pump-down chamber to ~1e-05 torr Functional checks on test articles + sensors Command motor to 60 rpm Collect data until thermally stable
T-1 Cold Test	Cold Vacuum (< 0 °C)		 Continue running motor at 60 rpm Continue collecting data Supply LN2 to bring encoder temperature to 0°C Monitor encoder, slowly lower T to -10 °C
T-2 Thermal Cycling	Cold Vacuum (0°C)	Hot Vacuum (70 °C)	 Command motor to 60 rpm, collect data Complete 1+ full thermal cycles by switching between LN2 cooling and resistor heating

Nominal = 800 mV, minimum acceptable = 400 mV

Encoder V still in nominal range (> 400 mV) despite drop at higher temps

Scanner Performance

Nominal signal frequency = 7200 Hz

Encoder signal frequency stable over temp \rightarrow stable scanner performance

Successful tests on two rotor/shaft mating

- (1) Epoxy + grooves

methods

- (2) Tolerance rings
- Both methods passed torque tests of up to 65 in-lb
- Selected Epoxy + grooves
- Successful test of encoder/scanner performance with temperature at vacuum pressure
- Future work: Thermal test epoxy/tolerance ring

- Validated scanner assembly: design achieves requirements
- Successful iterative design process
 - Prototypes and physical models for structural and thermal testing
 - SmallSat 2013 PCW

0

Backup Slides

Temperature Data

Motor commanded to continuously spin at 60 rpm during entirety of both tests

Motor and encoder operated nominally throughout all tested temperature ranges

Encoder Signal at -5 °C

Signal is filtered and averaged by oscilloscope, as will be similarly done by on-board avionics Nominal signal amplitude: > 400 mV Nominal signal frequency: 7.200 kHz

Encoder signal amplitude and frequency are both well within nominal range

Active

Encoder Signal at +60 °C

Signal is filtered and averaged by oscilloscope, as will be similarly done by on-board avionics Nominal signal amplitude: > 400 mV Nominal signal frequency: 7.200 kHz

Though the encoder signal amplitude decreased at higher temperature, the signal amplitude and frequency are both still within nominal range

Active