Dependable Multiprocessor: An Application Approach

Morehead State University Asst. Prof. Kevin Brown SmallSat CubeSat 08/10//2013

08/09/2013

1

Presentation Overview

- The Team
- The Dependable Multiprocessor
- The CubeSat Host
- Conclusion

Presentation Overview

- The Dependable Multiprocessor Team
 - Morehead State University
 - Kevin Brown, Ben Malphrus, et ε
 - Honeywell
 - John Samson, et al
 - Radiance Technologies
 - Kathy Byrd, et al

- Funders: NASA, Army, Honeywell, MSU

08/09/2013

Honeywell

The Dependable Multiprocessor

- NASA Sponsored Dependable Multiprocessor (DM) Technology
- Cluster of high performance COTS processors are grouped to mitigate space environment effects
- DM Technology is a middleware package. It is Flexible, Scalable, Low Overhead, Easy to Use

The Dependable Multiprocessor

 DM is NOT the hardware – DM is a hardware independent set of middleware and management system for a set of processing nodes

08/09/2013

The Dependable Multiprocessor

- Provides more payload processing capability within given size, weight, power & cost constraints
- Supports easily programmable, adaptable, scalable, parallel processing
- Software-enhanced SEE tolerance for COTS
 - rapid autonomous recovery from SELs, SEFIs, & SEUs
 - high Availability & Reliability (Computation Correctness)
- Offers 10X 100X higher throughput density compared to software programmable rad hard processing solutions

The DM: Hosts

NASA ST8 Gumstix

08/09/2013

Honeywell

Building a CubeSat Host

- First a host processor must be selected
 - Gumstix Earth
 - Reasonable price, COTS
 - Small to fit in within CubeSat
 - Demonstration boards
 - Established Linux softwar

- A Node
 - Nodes must communicate
 - Ethernet network
 - 100 Mbps LAN

- Gumstix Processor module does not contain a PHY layer
- Gumstix has high density low profile connector

- Subsystem board
 - Mechanical
 - Retain each node
 - Interface to each node
 - Thermal management
 - Independent node management
 - Power sensing (I/V)
 - Power switching
 - Reset

- Backbone
 - Central Ethernet switch
 - 100 Mbps satellite connection to cluster
 - Power Regulation
 - Power Distribution
 - Telemetry UART
 - Node UARTs, Reset, etc

- Mechanical
 - Core 75mm x 75mm x 35mm
 - Legs to 97 mm
 - Legs conduct all heat to exterior faces then to satellite frame

- The Cluster
 - Installation by exterior screw
 - Interface by Samtec SFSD connect

4 Months!

Conclusions

Host system successfully demonstrated DM system with a 5 MP imager. Compressed images were sent as telemetry in different compression sizes. System is sized for the CubeSat form factor for future mission needs

Contacts: John Samson - Honeywell Ben Malphrus - MSU

QUESTIONS

08/09/2013

