

Comparison of Maximum Power Point Tracking Techniques in Electrical Power Systems of Cubesats

Jesus Gonzalez-Llorente Escuela de Ciencias Exactas e Ingenierías Universidad Sergio Arboleda Bogotá D.C., Colombia jesusd.gonzalez@correo.usa.edu.co Eduardo I. Ortiz-Rivera Dept. of Electrical and Computer Engineering University of Puerto Rico-Mayagüez Mayagüez, Puerto Rico eortiz@ece.uprm.edu

UNIVERSIDAD

SERGIO ARBOLEDA

Donde tú SI cuentas.

27th Annual AIAA/USU Conference on Small Satellites

August 10 - 15, 2013

Agenda

- Introduction
 - From Libertad 1 to Libertad 2
- The problem
 - Selection of MPPT algorithm for EPS
- Method
 - Simulation over one orbit of MPPT techniques
- Results
 - Comparison of Energy for each Technique
 - Future work

Introduction

- Classification: Nanosatellite
- CubeSat (Academic)
- Application: Earth Observation
- Orbit: LEO

Introduction

1. Development of an image acquisition system for Cubesat

2.Optimization of power systems

SATELITE

Universidad Sergio Arboleda

UNIVERSIDAD SERGIO ARBOLEDA Donde tú Sí cuentas.

Conclusions

- The ideal operating point of the PV cells was estimated during the orbit sunlight period to be used as a benchmark for the MPPT comparisons
- Both MPPT methods presented a similar performance over an entire sunlight period

Conclusions

- An effective operation of LRCM requires precision in the mathematical model of the PV panel.
- LRCM could be implemented without the disconnection of the PV panel
- In the case of P&O method, a careful selection of the sampling time and the step size must be done for its correct operation.

Future work

 Different situations without attitude control are being analyzed to know the performance of the MPPT

Future work

1. Experimental validation

2. Experimental validation

Thank you!

Comparison of Maximum Power Point Tracking Techniques in Electrical Power Systems of Cubesats

Questions?

Speaker: Jesús González-Llorente **jesusd.gonzalez@correo.usa.edu.co**

Technical Director of Libertad 2: Jorge.soliz@usa.edu.co

References

- Wertz JR, Puschell JJ, Everett DF. Space Mission Engineering The New SMAD (SME-SMAD). 1st Edition. Microcosm Press; 2011.
- Esram T, Chapman PL. Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion. 2007.
- Subudhi B, Member S, Pradhan R. A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems. Sustainable Energy, IEEE Transactions on. 2013;4(1):89–98.
- Erb DM, Rawashdeh SA, Lumpp JE. Evaluation of Solar Array Peak Power Tracking Technologies for CubeSats. In: Proceedings of the AIAA/USU Conference on Small Satellites.; 2011..
- Malek H, Chen Y, Burt R, Cook J. Maximum Power Point Tracking Techniques for Efficient Photovoltaic Microsatellite Power Supply System. In: Proceedings of the AIAA/USU Conference on Small Satellites.; 2012.
- Femia N, Granozio D, Petrone G, Vitelli M. Predictive Adaptive MPPT Perturb and Observe Method. Aerospace and Electronic Systems, IEEE Transactions on. 2007;43(3):934–950.
- of Kentucky. 2011.

References

- Myers DR, Emery K, Gueymard C. Revising and Validating Spectral Irradiance Reference Standards for Photovoltaic Performance. In: ASES/ASME Solar Energy 2002 Conference. Reno, Nevada, USA: ASME; 2002:367–376. Available at: http://www.nrel.gov/docs/fy02osti/32284.pdf.
- Patel M. Spacecraft Power System. 1st Edition. Boca Raton, Florida, USA: CRC Press; 2005.
- Ortiz-Rivera EI, Peng FZ. Analytical Model for a Photovoltaic Module using the Electrical Characteristics provided by the Manufacturer Data Sheet. In: IEEE 36th Conference on Power Electronics Specialists, 2005. IEEE; 2005:2087–2091.
- Gil-Arias O. Modelado y Simulación de Dispositivos Fotovoltaicos. Master thesis. University of Puerto Rico at Mayagüez. 2008.
- Gonzalez-Llorente J, Hurtado R. Comparación de modelos para celdas solares de alta eficiencia usadas en pequeños satélites y CubeSats. In: 10th Latin American and Caribbean Conference for Engineering and Technology (LACCEI). Panama: LACCEI; 2012.
- Azur Space. 30% Triple Junction GaAs Solar Cell. 2012. Available at: http://azurspace.de/index.php?mm=162.

References

- Koutroulis E, Kalaitzakis K, Voulgaris NC. Development of a microcontroller-based, photovoltaic maximum power point tracking control system. Power Electronics, IEEE Transactions on. 2001;16(1):46–54.
- Ortiz-Rivera EI, Peng F. A novel method to estimate the maximum power for a photovoltaic inverter system. In: Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual.Vol 3.; 2004:2065–2069 Vol.3.
- Gonzalez-Llorente J, Ortiz-Rivera EI, Salazar-Llinas A, Jimenez-Brea E. Analyzing the optimal matching of dc motors to photovoltaic modules via dc-dc converters. In: Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE . 2010:1062 – 1068.
- Depew, J. Efficiency Analysis of a Synchronous Buck Converter using Microsoft[®] Office[®] Excel[®]-Based Loss Calculator. Microchip. AN1471. 2012.
- Friedel J, McKibbon S. Thermal Analysis of the CubeSat CP3 Satellite.; 2011. Available at: http://digitalcommons.calpoly.edu/aerosp/46/.
- Erb D. Evaluating the Effectivenes of Peak Power Tracking Technologies for solar array on small spacecraft. Master Thesis. University

Lighting

Satellite-Libertad2: Lighting

Sunlight Times

Global Statistics

Min Duration	19 Jan 2015 17:00:00.000 19 Jan 2015 17:52:28.764	3148.764
Max Duration	26 Jan 2015 14:08:18.598 26 Jan 2015 15:27:20.599	4742.002
Mean Duration		4699.866
Total Duration		479386.290

Penumbra Times

Global Statistics

Min Duration	19 Jan 2015 17:5	52:28.764 19 Jan	2015 17:52:53.133 2	4.369
Max Duration	26 Jan 2015 15:4	47:13.405 26 Jan	2015 15:47:38.998 2	5.593
Mean Duration			2	4.947
Total Duration			503	9.383

Umbra Times

Global Statistics

Min Duration	26 Ja	an 2015	15:27:45.967	26 Ja	2015	15:47:13.405	1167.437
Max Duration	19 Ja	an 2015	17:52:53.133	19 Ja	2015	18:13:06.544	1213.411
Mean Duration							1191.825
Total Duration							120374.327

Lighting

- Semieje mayor=7100 (700 km sobre la superficie terrestre)
- Eccentricidad=0.009
- Inclinación=98 grados
- Longitud de nodo ascendente=191 grados
- Argumento del perigeo=189 grados
- Anomalía verdadera=0 grados

