

3-Axis Attitude Determination and Control of the AeroCube-4 CubeSats

Darren Rowen Rick Dolphus The Aerospace Corporation

Vehicle Systems Division 10 August 2013

© The Aerospace Corporation 2013

Topics

- AeroCube History and Overview
- Hardware
- Attitude Determination and Control
- Flight Software
- Photos

AeroCube History and Overview

Aerospace's "PicoSat" History

Aerocube 4 Satellites

- Launched September 2012 on NROL-36
- 63° inclination and 470 x 780 km altitude
- 10 x 10 x 10 cm size
- 1.3 kg total mass
- Full attitude control
- Adjustable wings for variable drag
- 2 ft. diameter x 1.5 ft. tall conical deorbit chute
- Avionics include GPS, redundant radios, and reprogrammable on orbit
- Sensor includes three 2 megapixel visible cameras with 1 km and 10 km ground resolution and one "fisheye" lens

Variable-angle wings for orbit control

- Lower altitude or accelerate deorbit
- Avoid collision with another space object

Hardware

AeroCube 4 Exploded View

Darren.Rowen@aero.org Control Analysis Department

Satellite Electronics

Sun

AEROSPACE

Satellite Electronics

- Attitude Control on a PIC Processor
 - 8-bit architecture
 - Unfolded 32-bit floating point math
 - No operating system
 - Timing through on-chip timers

Attitude Determination and Control

Attitude Determination (1 of 2)

- Attitude sensors
 - Sun sensor
 - Earth sensor
 - Magnetometer
- Require 2 of 3 attitude sensors to get full 3-axis attitude (gyroless design)
 - Sun sensor alignment and calibration is based on ground measurements/testing
 - Earth sensor alignment and calibration is fine-tuned on-orbit
 - Magnetometer biases recalculated on-orbit at beginning of each mission (using attitude from Sun sensor and Earth sensor while nadir pointing)
- Nadir pointing
 - Use Sun & Earth
- Off-nadir (including inertial pointing)
 - Use Sun & Magnetometer (Earth sensor less accurate or unavailable off-nadir)

Attitude Determination (2 of 2)

- <u>Fixed</u> covariance filter
 - Based on Kalman filter equations, but with fixed state covariance matrix
 - Fewer calculations than full Kalman filter (satisfies processing time constraints)
 - Propagate state (but do not propagate state covariance, i.e. use steady state solution)
 - State = [attitude ; rate]
 - State covariance, P
 - Solve for steady state covariance P_{ss}
 - Keep dominant terms (block diagonals)
 - Kalman filter gain matrix (info only): $K = P^*H^T * (H^*P^*H^T + R)^{-1}$
 - Gain matrix (assume $H^*P^*H^T \ll R = I^*\sigma^2$): $K = (P_{ss} / \sigma^2) * H^T$
 - Example: Earth sensor measurement (boresight along Z-axis)

Measurement: Measurement Matrix: State Update:

$$y = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad H = \begin{bmatrix} 0 - u_3 & u_2 & 000 \\ u_3 & 0 & -u_1 & 000 \end{bmatrix} \quad \Delta x = \frac{1}{\sigma^2} \begin{bmatrix} P_{11} & 0 & 0 \\ 0 & P_{22} & 0 \\ \frac{0}{P_{41}} & 0 & 0 \\ 0 & P_{52} & 0 \\ 0 & 0 & P_{63} \end{bmatrix} \begin{bmatrix} 0 & u_3 \\ -u_3 & 0 \\ u_2 & -u_1 \end{bmatrix} (y_{meas} - y_{pred})$$

Attitude Control

- 3-axis attitude control
 - PI control law
 - Actuators: Reaction wheels (speeds up to 100 KRPM)
- Momentum control
 - Momentum builds due to spacecraft dipole and atmospheric drag
 - Dump wheel momentum by applying coil torque = M x B
 - Earth magnetic field B
 - B in ECI-frame is calculated using polynomial fit generated on ground and uploaded to spacecraft
 - Map B to Body-frame using estimated attitude
 - Actuators: Magnetic torque coils (magnetic moment M)

Flight Software

Software Development Process Flow

Control System Block Diagram

Flight Software Auto-Code Generation

- Streamlined Flight Software Development
- ACS Algorithms were developed in MATLAB
- The MATLAB Coder was used to auto-generate C code that was later merged with hand coded low level drivers and supporting command and data handling functions

	👔 🗋 🔚 💩 🐃 🗐 77 (* 🎯 🎮 🖛 🗰 🎋 🗱 🖬 🖬 🖬 🖉 🖬 🖉 🖓	v		
+	-1.0 + \div 1.1 × $\%_{+}^{*}$ $\%_{+}$			
× a c	/Users/dwr27059/Documents/AeroCube/Attitude_Control.m		5 X	/Users/dwr27059/Documents/AeroCube/Attitude Control/Attitude Control.c
18 - 19 - 20 - 21 - 22 - 23 - 23 - 23 - 23 - 23 - 23 - 23 - 23 - 23 - 28 - 28 - 29 - 20 - 28 -	<pre>persistent Integrated_Gyro_Angle_prev Quat_ECI2Body_est Integral_State if isempty(Integrated_Gyro_Angle_prev) Integrated_Gyro_Angle_prev=zeros(3,1); Quat_ECI2Body_est=(0;0;0;1); Integral_State=zeros(3,1); end * Quaternion Interpolation q_ECI2Body_cmd_10Hz=QuatProp_rate(q_ECI2Body_cmd_1Hz,Ts,w_Body_cmd_1Hz); * Delta Angle w/ rollover correction deltatheta=Integrated_Gyro_Angle=Integrated_Gyro_Angle_prev; for n=1:3 if deltatheta(n)=deltatheta_Max deltatheta(n)=deltatheta_Min deltatheta(n)=deltatheta_Min deltatheta(n)=deltatheta(n)=Integrated_Gyro_Angle_RolloverNeg; elseif deltatheta(n)<deltatheta_min deltatheta(n)=deltatheta(Quat_ECI2Body_est,deltatheta); * Quaternion Propagation Quat_ECI2Body_est=QuatProp_deltatheta(Quat_ECI2Body_est,deltatheta); * Quaternion Difference QuatError=QuatDiff(Quat_ECI2Body_est,q_ECI2Body_cmd_10Hz); QuatError=MakeQuatCanonical(QuatError); Att_Control_Error=2*QuatError(1:3); * Rate Error w_Body_est=deltatheta/Ts; Att_Rate_Error=w_Body_cmd_1Hz-w_Body_est; * PID * Backward Euler Discrete-Time Integrator Integral_State = Integral_State + Ki*Ts*Att_Control_Error; if Integral_State(n) > Integral_State_Max; elseif Integral_State(n) < Integral_State_Min</deltatheta_min </pre>		106 107 107 109 110 111 112 113 114 115 116 117 116 117 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	<pre>} c2_QuatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; c2_QuatAdd(c2_QuatError, *c2_qECI2Body_cmd_lHz, c2_qECI2Body_cmd_l0Hz); for (c2_k = 0; c2_k < 3; c2_k+1) { c2_mag2 = (*c2_Integrated_Gyro_Angle)[c2_k] - c2_Integrated_Gyro_Angle_Prev[c2_k]; if (c2_mag2 > c2_b_deltatheta_Max) { c2_mag2 = -c2_b_Integrated_Gyro_Angle_RolloverNeg; } else { if (c2_mag2 < c2_b_deltatheta_Min) { c2_mag2 += c2_b_Integrated_Gyro_Angle_RolloverPos; } } c2_Integrated_Gyro_Angle_prev[c2_k] = (*c2_Integrated_Gyro_Angle)[c2_k]; c2_mag2 += c2_b_Integrated_Gyro_Angle_RolloverPos; } } c2_mag2 = c2_y[0]; for (c2_k = 0; c2_k < 2; c2_k+1) { c2_mag2 += c2_y[0]; for (c2_k = 0; c2_k < 2; c2_k+1); } c2_mag2 = c2_y[0]; for (c2_k = 0; c2_k < 3; c2_k+1) { c2_mag2 += c2_y[c2_k + 1]; } c2_quatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 3840.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_quatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_duatError[3] = (1.0 - c2_mag2 / 8.0) + c2_mag2mag2 / 384.0; for (c2_k = 0; c2_k < 4; c2_k+1) { c2_uuatError[3] = (0,0;) }</pre>
MATLAB Code				Auto-generated C Code

Auto-generated C Code

Photos

- 1. Qatar (10/30/2012)
 - Use photos to align Earth sensor
- 2. Hurricane Sandy (10/26/2012)
 - Sweep LOS across ground target
- 3. Dubai (05/30/2013)
 - Point LOS at ground target
 - Verify pointing performance
- 4. Stars (02/06/2013)
 - Point LOS at inertial target off-nadir
 - Use stars to determine actual attitude

Photo 1:

Qatar

(Using Photos to Align Earth Sensor)

Photo Qatar (AeroCube AC4 Narrow FOV)

Earth Sensor Alignment

- Reference points
 - Recognizable geographic features (usually coastline)
 - Using pixel locations and camera alignment, calculate unit vectors in body frame: U_B
 - Using latitude/longitude and spacecraft ephemeris at time of photo, calculate unit vectors in ECI: U_I
- Solve for attitude TBI (DC matrix from ECI-frame to Body-frame)
 - Wahba problem: Solve for TBI that minimizes cost norm(U_B TBI * U_I)
 - Solution (Markley)

```
X = [U1_B, U2_B, U3_B, U4_B, U5_B]*[U1_I, U2_I, U3_I, U4_I, U5_I]' ;
[U,S,V] = svd(X) ; % U*S*V' = X
d = det(U)*det(V) ;
TBI = U*diag([1 1 d])*V' ;
```

• Use calculated TBI and Earth sensor measurements to align Earth sensor

Photo 2:

Hurricane Sandy

(Sweep LOS Across GroundTarget)

Ground Tool Used to Plan Mission

) **AEROSPACE**

Line of Sight Profile

Darren.Rowen@aero.org Control Analysis Department AEROSPACE

Photo Hurricane Sandy (AeroCube AC4 Medium FOV)

Photo 3:

Dubai

(Point LOS at Ground Target, Verify Pointing Performance)

Line of Sight Profile

Darren.Rowen@aero.org Control Analysis Department

Photo Dubai (AeroCube AC4 Narrow FOV)

Photo 4:

Stars

(Point LOS at Inertial Target, Use Stars to Determine Actual Attitude)

Use Camera as Star Tracker

- The next charts show results using photo of stars (02/06/2013)
 - NFOV, 1600 x 1200 pixels, 16 x 12 deg (20 deg diagonal)
 - Exposure time unknown (around 1-2 sec auto-exposure)
- Post-processing (on ground) of photo data
 - Download compressed jpeg to ground
 - Apply median filter (row and column)
 - Find pixels above threshold
 - Find centroids of pixel clusters
 - Use lost-in-space algorithm to identify stars and determine attitude
- Results
 - Number of pixel clusters = 409 (based on selected threshold)
 - Use 6 brightest clusters in lost-in-space algorithm
 - FOV contains 31 catalog stars as dim as magnitude 6.00
 - 26 catalog stars line up with a pixel cluster
 - Dimmest magnitude match 5.98
 - No match for some catalog stars at magnitude 5.73+
 - Match for 22 brightest catalog stars down to magnitude 5.64

Photo Stars (AeroCube AC4 Narrow FOV)

Photo (Focal Plane Data)

Darren.Rowen@aero.org Control Analysis Department

Apply Threshold

Here apply low threshold to see dimmest stars (also see a lot of noise)

Darren.Rowen@aero.org Control Analysis Department

Catalog Stars and Pixel Clusters

Conclusions

- Successful 3-axis attitude determination and control
 - Nadir pointing
 - Sweep across off-nadir ground target
 - Track ground target
 - Inertial pointing
- COTS Camera Photos Very Valuable
 - Sensor alignment / calibration
 - Pointing performance verification
 - Attitude determination (post-processing on ground)

All trademarks, service marks, and trade names are the property of their respective owners

Thank you

© The Aerospace Corporation 2013