

DICE Mission Results from over a Year of On-Orbit Operations

Tim Neilsen et al SmallSat CubeSat Workshop August 10th, 2013

SDL Proprietary

DICE Team Photo

SDL Proprietary

What is DICE?

Measuring density structures (plume and bulge) associated with Storm Enhanced Density (SED) features during Electromagnetic Storms in the Ionosphere.

Yahtzee

DICE: Two 1.5U SensorSats

- Electric Field ~0.2 mV/m, Double Probe Technique, 10 m tip-to-tip wire booms, 70 Hz sample rate
- > Plasma Density ~10² cm⁻³, Dual Langmuir Probes, 70 Hz sample rate
- Magnetic Field ~5 nT, 70 Hz sample rate

SDL Proprietary

Delivery & Launch

> Delivered to CalPoly

Oct 5th 2011

Launched on NASA ELaNa III program

Oct 28th 2011

S/C	Period (min)	Inclination (°)	Apogee (km)	Perigee (km)
Farkle	97.35	101.72	808	456
Yahtzee	97.34	101.72	807	456

On Orbit Housekeeping Data

DICE ADCS Subsystem

Custom ADCS design

- ADCS-grade magnetometer
- SDL Sun Sensor
- NovAtel GPS
- 3-axis Torque Coils

Comparing Science & ADCS Magnetometers

> Yahtzee Science & ADCS Magnetometer Data

Noise floor comparison

ScienceMag Floor: ~ 5-10 nT

Science Magnetometer Data

Geomagnetic disturbance measured by the Farkle SciMag on May 22, 2012

Langmuir Probe Data

DICE SensorSat Science Data

DICE SensorSat Science Data

1.00e+10 2.08e+11 4.07e+11 6.05e+11 8.03e+11 1.00e+12 1.20e+12

DICE Telemetry Generation Rates

	Rate (Hz)	Word Size (# bits)	Sample Size (# Words)		Sample Period	
Channel Name				Bit Rate (bits/s)	#/Orbit*	Spatial (km)**
EF Probe DC Pair 1_2	35.00	16.00	1.00	560.00	194376.00	0.22
EF Probe DC Pair 3_4	35.00	16.00	1.00	560.00	194376.00	0.22
EF Probe AC Wave Power	1.00	16.00	4.00	64.00	5553.60	7.70
Floating Potential Probe	35.00	16.00	1.00	560.00	194376.00	0.22
Langmuir Probe 1	35.00	16.00	1.00	560.00	194376.00	0.22
Langmuir Probe 2	35.00	16.00	1.00	560.00	194376.00	0.22
Sweeping Probe 1	0.01	16.00	512.00	67.99	46.09	927.71
Sweeping Probe 2	0.01	16.00	512.00	67.99	46.09	927.71
Science Mag X-Axis	35.00	18.00	1.00	630.00	194376.00	0.22
Science Mag Y-Axis	35.00	18.00	1.00	630.00	194376.00	0.22
Science Mag Z-Axis	35.00	18.00	1.00	630.00	194376.00	0.22
On orbit Rate (bits/s)	=			4889.99***		

*Assumes an orbit period of 92.56 min; **Assumes a spacecraft velocity of 7.7 km/s

*** Does not include packet format overhead

DICE Telemetry Systems (3 Mbit/s)

SDL CubeSat Missions Operations Center

- Wallops and SRI ground stations controlled remotely from SDL headquarters
- Dual ground station coverage allows for 4 – 5, 15-minute communications overpasses per day

Downlink Telemetry System

Interference at SRI Site

Interference at Wallops Site

Frequency [MHz]

Power Spectral Density

Improvement In Downlink Quality

				Data Availabi	lity			
			••••••••••••••••••••••••••••••••••••••	MR	mmunu		ևոսուսուսուս	
		75%	< 40	MB				
		50%	< 30	MB				
		25%	< 20	MB				
		1 orbit	< 10	MB				
		n%		MD				
	•							
DOWNLINK Y								
DOWNLINK F	l			ll				
SCI SWEEP Y								
SCI SWEEP F								
							. 1	
SCIENCE Y							III	••••
SCIENCE F								
ADCS Y			hlb	h.			lindili jiridili dil	
ADCS F							ԱՍաներՈՍՈՈ	
HSKP Y						nhumh	mhanddi, lladdiddia	IIIIIu
							. Մ	
HSKP F								
12/0	9/11	01/22/12	03/06	/12	04/19/12	06/0)2/12	
			Spa	ace Dynan	nics	In the second		1. The
Utah State University Research Foundation								
SDL Proprietary								

Farkle Data Recovered

> 5.13GBytes of on-orbit data recovered and stored in MOC database

Farkle Data Downloaded

Yahtzee Data Recovered

3.26GBytes of data recovered and stored in MOC database

Yahtzee Data Downloaded

Programmatic Lessons Learned

- Great things can indeed come from humble settings
- Positive collaboration between government, academia, small business, and industry with a set of common goals can be very productive.
- The support of NASA ELaNa in providing launch services to the CubeSat community is invaluable.

Technical Lessons Learned

- Once the CubeSats have reached orbit, all semblances of "smallness" disappear. Mission ops are complicated and time consuming.
- The engineering challenge of producing well performing science instruments within the technical resource constraints of a CubeSat is every bit as valuable as seeing how big we can make our farthest seeing large telescopes.
- NSF and NASA-sponsored CubeSat programs in general can greatly benefit by using government requested communication bands and established GS sites at WFF & SRI.
- CubeSats should, and will be, the backbone of many future global multi-point measurement missions.

Questions?

25

Acknowledgments

The authors gratefully acknowledge funding provided by NSF (grant numbers# ATM-0838059, AGS-1212381, AGS-1255782) and to the NASA ELaNa III group for launch services. The authors also gratefully acknowledge the countless hours of dedicated and passionate effort from the students on the DICE program. They indeed rose to the challenge. Without their energy and consistency, DICE would not have become a reality. Thank you Erik Stromberg, Weston Nelson, Crystal Frazier, Jaden Miller, Ben Byers, Cameron Weston, Mark Anderson, Steven Grover, Josh Martineau, Steven Burr, Keith Bradford, Russ LeBaron, Dan Allen, and Jon Tran.