

Four years (almost) of SwissCube operations

Stefano Rossi, Anton Ivanov, Muriel Richard, Volker Gass Armin Roesch, SwissCube Team

Swiss Space Center August 10, 2013 Small Sat pre-Conference Workshop.

Question

- Cubesat projects have been extremely popular in the last 10 years in many universities. These projects have a great reputation for educational and technological goals.
- Question for this presentation:

-Is it possible to to implement scientific experiments with Cubesats?

- Outline
 - Introduction for the Swiss Space Center
 - Definitions
 - Statistics for the last decade
 - Zoom into SwissCube
 - Wrap up and dicussion

SwissCube collaboration

About 200 BS and MS students over 3 years (6 semesters)... supported by laboratory staff and a good systems engineering team... about 15 laboratories from 7 CH engineering schools and universities were involved... 3

SwissCube: short presentation

SwissCube: short presentation

SwissCube results: AOCS

Saturday, August 10, 13

SwissCube results: AOCS

Saturday, August 10, 13

SwissCube results: EPS temperature control

Battery Temperature: MIN and MAX during 2011 and 2012

SwissCube, 13-1-2012, the MOON

Projection: Vec-Soleil de ADCS det. Alg. (YZ-plane)

Saturday, August 10, 13

Seconds (from12:28:35 of the 13/01/2012) [s]

SwissCube: Magnetometer results

Reasons for magnetometer oscillations: 1) Magnetotorquers influences 2) Currents accumulated on the solar panels or on the wires generated magnetic fields.

Lesson learned: need another magnetometer to determine oscillation.

SwissCube results: what worked

- EPS: worked perfectly, satellite is still running
- COM:
 - COM: works fine, some issues with the I²C bus, beacon is great
 - antenna deployment : probably source of many problems
 - initial rotation
 - poor uplink
- AOCS :
 - capable of bringing S/C rotation down
 - sun sensors: 2 out 12 failed after 3 years
 - magnetometers: calibration is off on one of the axes.
 - gyros: work fine, but were in saturation for the first two years.
- Payload
 - works, but optical model is not defined, considerable reflections on the telescope structure
- Ground Segment
 - works perfectly, now baseline for QB50 project constellation project
 - satellite is now operated by a radio amateur

as of 20:52 CST, 07 AUG 2013

Outlook and conclusions

- Swiss Space Center plans
 - CubETH
 - GNSS high precision measurement satellite
 - PRR scheduled for April 04, 2013
 - Object 3
 - 3U, 3 axis satellite for solar flare observations
 - CleanSpace One
- Although to date Cubesats were not great on science, the future looks quite promising
 - technology has matured to allow more complex payloads and more complex missions
 - there are great ideas for science with Cubesats (ExoplanetSat, MicroMas)
- Keys to a successful CubeSat science mission
 - 3U Cubesat
 - early start with the payload
 - testing, testing, testing
 - flight heritage: 3rd generation satellite (#3 in series)

Discussion?

SwissCube results: AOCS effects

Saturday, August 10, 13