10th Annual Cubesat Developer's Workshop

Design optimization of a Solar Panel Angle and its Application to CubeSat 'CADRE'

Dae Young Lee, James W. Cutler

UNIVERSITY of MICHIGAN
COLLEGE of ENGINEERING

Introduction

- Many CubeSats are power constrained.
 - There is not enough space for the solar cell installation.
 - Low Earth Orbits have varying eclipse times.
- Existing solutions
 - Deployable panels : ex. 'Space-dart' configuration
- Question : How can we maximize the utility of deployable panels?
 - What is the best pointing angle for the panels?
 - Anigstein et al^[1]. developed a optimal pointing angle decision methodology.
 - But they assumed no shadow on panels.
 - How do you assess the impact of solar panel shadow?
 - Consideration of the shadow effect is important during the satellite design.
 - More deployable panel can cast more shadows.
- Goal : To develop a process that determines static solar panel angles for optimal power generation

[1]"Analysis of Solar Panel Orientation in Low Altitude Satellites" IEEE Transactions on Aerospace and Electronic Systems VOL. 34, NO. 2 APRIL 1998

Objective Function Candidates

• Problem : What is the best panel angle in the given orbit parameter

• There are multiple objective functions for the power generation optimization

 $\max\left\{\int_{0}^{T} P(x, O_{p}, t) dt, T = 1 \text{ year}\right\}$ - Maximization of the total power generated during 1 year period

$$\max\left\{\min\left\{\frac{1}{T}\int_{(n-1)T}^{nT}P(x,O_p,t)dt, \ T=1 \text{ orbit}, \ n\in\left[0 \quad \frac{1 \text{ year}}{T}\right]\right\}\right\} \quad -\text{Maximization of the minimum orbit} \\ \text{average power which was recorded} \\ \text{during 1 year simulation period}\right\}$$

 $\max\left\{\min\left\{P(x,O_p,t), t \in [0,T_{orbit}]\right\}\right\} \quad \text{-Maximization of the low limit power generated during 1 orbit period (Sun synchronous Orbit)}$

Simulation Process

• Simulation Process for the power evaluation

• Sun position mapping in the attitude sphere^[2] can be done based on the simulation

[2] J.C. Springmann and J.W. Cutler "Optimization of Directional Sensor Orientation with Application to Photodiodes for Spacecraft Attitude Determination", Proceedings of the 23rd AAS/AIAA Spaceflight Mechanics Meeting, Kauai, Hawaii, February 2013.

AEROSPACE ENGINEERING

• We calculate the solar cell surface area projected in the direction of the Sun

- Using OpenGL, we calculate the area quickly and make a database.

Panel angle : 20° / Panel name : +b / Cell number : 7

AEROSPACE ENGINEERING

• Sum of each cell's projected area in the attitude sphere

• We use a following equation to calculate the generated power by solar cells

$$P(x, O_p, t) = S_0 \cdot \varepsilon \cdot \sum_{i=1}^{12} \sum_{j=1}^{7} A_{i,j} \left(x, \varphi_{sun}(O_p, t), \theta_{sun}(O_p, t) \right)$$
$$= S_0 \cdot \varepsilon \cdot A_{Total} \left(x, \varphi_{sun}(O_p, t), \theta_{sun}(O_p, t) \right)$$
$$S_0 \square 1366 \text{W/m}^2, \ \varepsilon \square 28\% \qquad 0^\circ \le x \le 90^\circ, \ 0^\circ \le \varphi_{sun}(O_p, t) < 360^\circ, \ 0^\circ \le \theta_{sun}(O_p, t) \le 180^\circ$$

 It is assumed that solar power generation is proportional to the solar cell surface area projected in the direction of the Sun.

• Panel angle value can be found out by exhaustive search on design space

• In this exhaustive searching process, the range of the panel angle x is 0°, 3°, 6°, ..., 90°

- the major parameters which affect solar power generation are the inclination(*i*) and RAAN(Ω)
 - Because, the Sun incident angle to orbital plane is decided by the inclination(*i*) and RAAN(Ω)
- The calculation speed is accelerated with MATLAB/Simulink coder and OpenGL
 - Area calculation with OpenGL: 1 DB generation takes about 4 min.
 - 1 year simulation with 10 second time interval takes about 5 min

Panel angle optimization of the Sun-synchronous orbit

Panel angle optimization of the Non Sun-synchronous orbit

- Panel angle : $0^{\circ} \sim 90^{\circ}$
- Inclination : $0^{\circ} \sim 82^{\circ}$
- In the given inclination range, the moving speed of RAAN(Ω) is greater than 360°/1year
 - Then we can rule out the RAAN(Ω) effect and compare the inclination and the panel angle's relation.

- Small panel angle has smaller daily deviation of the power than the large panel angle
- However, Large panel angle has smaller yearly deviation of the orbit average power than small panel angle

Result Analysis of Sun-Synchronous orbit ('Noon-Midnight' Orbit)

- Altitude : 700km , Inclination : 98°, Launching date : 3-20-2015
- During 1 year, the orbit average power has no change.

10th Annual Cubesat Developer's Workshop

Result Analysis of Sun-Synchronous orbit ('Dawn-Dusk' Orbit)

- Altitude : 700km, Inclination : 98°, Launching date : 6-20-2015
- If altitude is $\geq 1,060$ km, the eclipse period will not appear. ٠

Panel angle : 0[°]

Conclusions

- Advanced panel angle design optimization technique
 - Based on the result of the numerical simulation of every possible condition
 - Shadow effects consider
 - Deployable panels to other deployable panels
 - Deployable panels to the body panels
 - Dynamics consider
 - Orbit dynamics with J2, J3, J4.
 - Attitude dynamics
- Future work : EPS design optimization
 - Solar cell IV curve characteristic Modeling
 - Cell/Radiator thermal characteristics.
 - Battery characteristic
 - Albedo consideration
- Large scale Multidisciplinary Design Optimization(MDO) of Cubesat
 - Because the running all possible case simulation is very exhaustive and not practical
 - Researching 'Gradient based optimization'

Large Scale Cubesat MDO

10th Annual Cubesat Developer's Workshop

MICHIGAN

EXPLORATION

MICHIGAN

Additional Data

10th Annual Cubesat Developer's Workshop

10th Annual Cubesat Developer's Workshop

10th Annual Cubesat Developer's Workshop

10th Annual Cubesat Developer's Workshop

Additional Data

Eclipse of the Dawn-Dusk, in the Low Earth Orbit

10th Annual Cubesat Developer's Workshop

Additional Data

Result Analysis of Sun-Synchronous orbit ('Dawn-Dusk')

10th Annual Cubesat Developer's Workshop

Additional Data