Useful Earth Observation with Nanosatellite Platforms

Spring CSWS2013 Joost Elstak (ISIS), Johan Erasmus (ISIS SA), Johann du Toit (SIMERA)

ISIS

- Introduction and News
- System Overview
- Subsystem Overview
- Conclusions

US Satellite Soyuz/Bion-M

SPACEFLIGHT

1

0

0

3U ISIPOD ID: 'FM-14'

1 - 1/2012

0

SPACEFLIGHT

US Satellites (4x) Antares Estonian Satellite Vega

UK Satellite PSLV

- What can already be achieved using existing and emerging CubeSat building blocks?
- How close can we get to conventional small satellite performance?

	Value	Parameter
Mass	<15	[kg]
Average Power	11	[W]
Size	330x220x220	[mm ³]
Data Storage	~4	[Gbyte]
Downlink	1-100	[Mbps]
Pointing Knowledge	0.5	[Deg]
Pointing Accuracy	~1-5	[Deg]
Battery Capacity	2x65	[Wh]

	1 - Video	2 - Line Scanner	3 - PAN	4 - Hyperspectral	Comments
Swath	56 x 32 km2	163 km	163 km	130 x 85 km2	From 600 km orbit
GSD	29 m	40 m	20 m	198 m	
Bands	PAN/RGB	R,G,B	PAN	400 – 1000 nm, 10 nm bands	
SNR	TBD	> 200	> 100	@400 nm: ± 240 @1000 nm: ± 80	Using 6s, 50% target reflectance, 45 zenith angle
Optics MTF	> 0.5	> 0.5	> 0.5	> 0.4	
Imager mass estimate	1.8 kg	1.9 kg	1.9 kg	3 kg	Optics and Sensor
Peak Power	<5.5 W	< 7 W	< 6 W	< 3 W	

- Power:
 - Typical Li-Ion based architecture
 - 3J cell technology cells

- Power:
 - Typical Li-Ion based architecture
 - 3J cell technology
- CDHS:
 - 400 Mhz, ARM architecture
 - I2C Bus

- Power:
 - Typical Li-Ion based architecture
 - 3J cell technology
- CDHS:
 - 400 Mhz, ARM architecture
 - I2C Bus
- TT&C:
 - UHF/VHF 1k2/9k6

- Power:
 - Typical Li-Ion based architecture
 - 3J cell technology
- CDHS:
 - 400 Mhz, ARM architecture
 - I2C Bus
- TT&C:
 - UHF/VHF 1k2/9k6
- PL Downlink: S/X/(Ka) Band
 - Rates of 1-120 Mbit/s

- Power:
 - Typical Li-Ion based architecture
 - 3J cell technology
- CDHS:
 - 400 Mhz, ARM architecture
 - I2C Bus
- TT&C:
 - UHF/VHF 1k2/9k6
- PL Downlink: S/X/(Ka) Band
 - Rates of 1-120 Mbit/s
- ADCS:
 - Several systems offered

	DMC	12U	
Mass	100	15	[kg]
Volume	216U	12U	[U]
Power	30	10-15	[W]
GSD	32/22	20/40	[m]
Swath	320	160	[km]
DL rate	4-100	1-50	[Mbit/s]
ADCS	1	~0.5-5	[deg]

- Current COTS systems can provide a capable, reliable 15 kg class satellite
- Performance in the same ballpark as current small satellite missions
- CubeSat capabilities rapidly increasing
 - Catching up with current smallsat technology
 - Leading the way to more capable systems?

Useful Earth Observation with Nanosatellite Platforms

Spring CSWS2013 Joost Elstak (ISIS), Johan Erasmus (ISIS SA), Johann du Toit (SIMERA)

ISIS

Focus on turnkey solutions

- Reducing lifecycle cost
 - Building a "Satellite Factory"
 - Ticket to space
 - Standardised Operations
 - Engineering hours main driver cost
- Maximize Price/Performance
 - Small price vs Performance
 - Commonality vs Performance
 - Modularity vs Highly Integrated Systems