A Distributed Command and Data Handling Architecture for KYSat-2

Jason Rexroat Space Systems Laboratory University of Kentucky

10th CubeSat Developers' Workshop April 24–26th, 2013 San Luis Obispo, CA

Authors

 Chris Mitchell, Max Bezold, Marc Higginson– Rollins, Steve Alvarado, Zachary Jacobs, Samir Rawashdeh, James Lumpp

Partnerships: COSMIAC, Kentucky Space

Overview

- Space Systems Lab
- K-Bus Distributed Communications and Power
- KySat-2 Overview
- Imaging Payload

Space Systems Lab Missions

New NanoRacks/CubeLab Standard on the ISS, July 2010

KYSat-1 2006

KYSat-2 2013

PRINTSat and RAMPART 2012

High Altitude Balloons (Background Image)

Garvey

P-12A

First CubeSats Ejected into Sub-Orbital Space, March 2010

First Flight, Composite Super Loki, December 2007

Kentucky-Bus (K-Bus)

- Develop a standard bus for communications for small spacecraft
- Develop a standard bus for power for small spacecraft
- Combine these into K–Bus
 - Communications leverage plug-and-play SPA SDM-Lite infrastructure
 - Modular plug-and-play power system

K-Bus Communications

- SPA-based SDM-Lite developed by COSMIAC and the SSL
 - Utilizes I²C as communication layer between SDM and ASIM
 - Implemented on COSMIAC's Trailblazer, KySat-2, and on the CubeLab Bus on the ISS

K-Bus Power Features

- Modular, scalable distributed EPS technology
- Point of Load Regulation
 - Subsystems receive battery power, provide regulation themselves
- Incorporate DET as solar array interface
- Over voltage, over discharge, under voltage battery protection
- Battery, solar panel, and payload telemetry reporting

K-Bus Power Block Diagram

KySat-2 Mission

Goals:

- Distributed processing architecture
- Educational/Public
 Outreach through
 photos and sensor data
 for K-12
- Stellar Gyroscope Payload

Board Stackup

11

KySat-2 C&DH

- Custom Command and Data Handling system created by the Space Systems Lab
- Integrates mission and interface processors, storage, fault tolerance
 - Command API
 - Data exchange API

Development Process

 Development board (below)

FlatSat under test (above)

KySat-2 Payload

- Infer attitude change from successive star images
- Take star-field image sets
 - With timestamps (to tell rate)
 - With MEMS gyro rate data in between (to compare image estimate with propagation)
- To download more data, star coordinates and magnitude measurements can be downloaded as text files

A Distributed Command and Data Handling Architecture for KYSat-2

4/28/2013

Stellar Gyroscope Examples

Imager Specifications

- CMOS Sensor with S–Mount Lens
- Single board Linux computer running OpenCV image processing library
- Gain and exposure control

Parameter	Value		
System	Beagle Board running		
	Angstrom Linux		
Sensor	Aptina MT9P031 5 MP		
	CMOS detector		
Optics	16 mm focal length,		
	Aperture F/1.2		
Field of View	15° by 20.2°		
ADC Resolution	12 bits		
Pixel Size	2.2 x 2.2 µm		

Summary

- K-Bus is combination of modular, plug-and-play data and power bus for small spacecraft
- KYSat-2 has a distributed command system and stellar gyroscope payload
- Papers:
 - Providing a Persistent Space Plug-and-Play Avionics Network on the International Space Station
 - http://uknowledge.uky.edu/ece_etds/16/
 - S. A. Rawshdeh, J. E. Lumpp, Jr., James Barrington– Brown, Massimiliano Pastena, "A Stellar Gyroscope for Small Satellite Attitude Determination", 26th Annual AIAA/USU Conference on Small Satellites, 2012, Logan, UT

Thank you

Jason Rexroat

Space Systems Laboratory University of Kentucky

jtrexr2@uky.edu http://ssl.engr.uky.edu

Backup Slides

Direct Energy Transfer

Table 6: Overall Solar Cell to Battery Efficiencies					
No BCR		With Expected BCR Efficiency			
Solar Interface			a 1 aaa (0 1 404	
	Spin 1°/s, No Badiation		Spin 20°/s, No Radiation	Spin 1°/s +Radiation	
Fractional	99.1%	84.2%	67.9%	84.1%	
P&O	98.6%	83.8%	52.6%	83.9%	
dP/dV	98.9%	84.1%	46.7%	84.0%	
Final	05.7%	01.0%	51.00/	57.0%	
Fixed	95.7%	81.5%	51.2%	57.2%	
TC Fixed	99.2%	84.3%	29.1%	66.4%	
DET (No BCR)	86.5%		86.5%	91.0%	

- *Fractional*: operating at a set fraction of the open-circuit voltage
- *P&O*: Perturb and Observe
- *dP/dV*: Seeking maximum power by varying operating voltage
- *Fixed*: Fixed operating voltage
- TC Fixed: Temperaturecompensated fixed operating voltage
- *DET*: Direct Energy Transfer

Erb, Daniel Martin, "EVALUATING THE EFFECTIVENESS OF PEAK POWER TRACKING TECHNOLOGIES FOR SOLAR ARRAYS ON SMALL SPACECRAFT" (2011). University of Kentucky Master's Theses. Paper 656.

Concept of Stellar Gyroscope Observe the motion of stars in camera's field of view to infer changes in satellite's attitude.

- Measures relative attitude between exposures with common stars
- Tolerates large amount of noise, allowing low cost assembly and small form factor

Star Detection

- Convolution filter, experimented with several mask sizes and shapes.
 - Minimizing false positives
 - Extracting dim stars

Best so far: Sinc function

2500

2000

1500

1000

500

1400

Centroiding

"Centroiding", aka Expected Value $\mathsf{E}(x) = \sum x \cdot f_x(x)$

$$f_x(x) = \sum_y f_{xy}(x, y)$$

4/28/2013

A Distributed Command and Data Handling Architecture for KYSat-2 /3 0

Solving the Relative Attitude Problem

Using the Direction-Cosine-Matrix (DCM) notation, the attitude change between two frames satisfies:

$$\overrightarrow{\mathbf{v}^{b}} = \boldsymbol{C}^{ba} \, \overrightarrow{\mathbf{v}^{a}}$$

The goal is to find the rotation matrix (C^{ba}) that defines the rotation between frame a and frame b, by minimizing the cost function:

$$J(\mathbf{C}^{ba}) = \sum_{k=1}^{L} w_k \left| \mathbf{v}_k^{\mathbf{b}} - \mathbf{C}^{ba} \mathbf{v}_k^{\mathbf{a}} \right|^2$$

Given at least two vector measurements (two stars before-and-after), The Q-Method is used to find the analytically optimal relative attitude estimate.

Random Sample Consensus (RANSAC)

- (RANSAC: iterative method to estimate parameters of a mathematical model from a set of observed data which is contaminated a large number of outliers that do not fit the model.
- The steps of RANSAC can be summarized as
 - Hypothesize: A hypothesis rotation is based on MEMS rate information, or calculated using randomly selected star pairs across frames.
 - Test: The estimated rotation matrix is tested against all the stars in the two frames. Stars that show consensus are counted towards the Consensus Set (CS).
 - Iterate: RANSAC iterates between the above two steps until a random hypothesis finds "enough" consensus to some selected threshold.

A Distributed Command and Data Handling Architecture for KYSat-2 4/28/2013 27

Dataset from Raven Run Area

www.sky-map.org image of same region

Stellar Gyroscope Camera

A Distributed Command and Data Handling Architecture for KYSat-2

4/28/2013

/3 0

28

Attitude Response in Eclipse: MEMS only

- Assuming perfect attitude knowledge before entering eclipse
- MEMS rate gyro: 50Hz, ±80 °/second, 12-bit ADC, Noise 0.1 °/second RMS
- Attitude knowledge error increases up to 5° in the first 5 minutes and more than 10° Attitude propagation using MEMS gyros, only after 35 minutes.

A Distributed Command and Data Handling Architecture for KYSat-2

4/28/2013

MEMS assisted by Stellar Gyroscope

- Gyroscope Assuming perfect attitude knowledge before entering eclipse
 - Stellar gyro generates attitude estimates (σ = 0.1°), at 15 second increments, relative to the first photo taken at the beginning of eclipse.
 - Drift is maintained below 1°

A Distributed Command and Data Handling Architecture for KYSat-2

4/28/2013

30 /3 0