### **Unix Space Server (USS) Project**

CubeSat Developers' Workshop Cal Poly - April 26, 2013



MIDN Samuel Noah Sipe UNITED STATES NAVAL ACADEMY AEROSPACE ENGINEERING DEPARTMENT

### Inspiration for research



- Is there a way to use Lower Earth Orbit to host a webserver?
- Can spacebound communications speed up the internet?
- Can it increase global coverage?
- What limitations exist for TCP/IP or Linux in Space?
- Attempts to use it previously?
- Worth the costs?

### Background



### TCP/IP

- IP protocols are well known and used
- Easy access to payload server from existing technology
- Little space heritage (especially in LEO)
   Linux
- New (and controversial) in the CubeSat Community
- Inexpensive and open source
- Power Concerns

## **Other Flight Attempts**

Arduino

- ArduSat Summer 2013
- Nanosatisfi LLC

Linux

 Strand - Linux processor and smartphone - February 2013
 TCP/IP





NASA - 2008 - Developed
 DTN for use in space (funding cut)

### Introduction to USS



USS is a small satellite in development at the Naval Academy that is focused on:

- Using a CubeSat form factor
- Commercial-off-the-shelf
- Open Source where possible
- Simple flight software and payload integration





The mission of USS is to host a web server from space utilizing standard internet protocol (IP), COTS components, and Linux-based server management.

### **Mission Objectives**



Primary Mission Objectives:

- Demonstrate use of a Linux kernel as a webserver on a CubeSat.
- Utilize a standard uniform resource locator (URL) and IP address accessible to any internet user whenever the satellite has an established downlink connection.
- Demonstrate use of IP in space communication.

### **Mission Objectives**



### Secondary Mission Objectives:

- Compare packet transfer speeds of space-based versus terrestrial network paths.
- Investigate the potential of small satellite constellations as networks.
- Investigate the potential to improve global internet coverage, including coverage of remote regions of the globe.

# **Technical Objectives**

6 Phases of the USS Design



### **Completed Objectives**



Phase 0 - Spring 2012 - Concept Development - Complete

- Is it possible to use IP in space communication?
- Why are Linux and IP not already in use if it is possible?

Phase 1 - Fall 2012 - Concept Feasibility - Complete

- Select hardware components for use onboard USS.
- Develop a working Linux server on a BeagleBoard.
- Develop a working program to be used as flight software on an Arduino.
- Determine a requirement for electrical power subsystem onboard the satellite, excluding communication power requirements.
- Estimate the total satellite mass.



### **Current Objectives**



Phase 2 - Spring 2013 - Communications Development

- Develop TCP/IP communications link (uplink/ downlink for payload).
- Host a server over determined RF frequency with website and URL.
- Develop Communications link using another standard, tested protocol for flight computer.
- Network and establish communication between the BeagleBoard and the Arduino.
- Test composite unit and develop a more accurate EPS requirement for both processors and communication.
- Characterize access time and necessary orbit requirements.



### **Future Objectives**



Phase 3 - Fall 2013 - Construction and Final Design

- Phase into a Capstone Design Project.
- Develop a satellite structure and thermal management system.
- Develop a final communications suite for optimal data rates and server uptime.
- Construct a satellite and acquire necessary structure/ solar panels/ batteries/ other subsystems using space tested COTS equipment.



### Future Objectives (con't)



Phase 4 - Spring 2014 - Testing and Optimization

- Test the satellite at GSFC or USNA for thermal and structural integrity.
- Test satellite operations using the Snowflake Project or mounting the payload to a UAV.
- Achieve a duty cycle in testing of at least 25%.

#### Phase 5 - Post USNA - Launch

 This is the operations phase, and includes launch, checkout, and on-orbit space application testing.



# **Design Concepts**



### A look at the USS Subsystems

## Mission Payload Subsystem



- The main payload on the USS is the server hosted on a BeagleBoard-xM
- Hosted over S-Band with up to a 1Mbps data rate
- 1Ghz processor, 512MB ram, 32GB Flash Drive
- 3.0W average power required
- Server will host a website and a live stream of images from an onboard HD camera





BeagleBoard-xM

HD camera

## Communications Subsystem





#### S-Band - Payload

- 2.4 GHz
- 128 bit AES encryption
- 935 Kbps
- Transmit: 1.7 W
- Receive: 0.8 W
- -40 °C to +80 °C temp range



AvaLan Wireless AW2400

### **Preliminary Test Results**



Server is operational and communicating over S-Band link (in the lab at 935kbs)
 The C&DH is under development and communicating over UHF



Ground Station and Development Platform

# Satellite Configuration

Preliminary Study

## Command and Data Handling Subsystem



- Arduino Pro used as main C&DH module
- ArduIMU for GPS, Accelerometer, Magnetometer and Gyrometer
- Module will directly control the power bus of the satellite
- Accessible over UHF communications
- For simplicity, it will always be on after launch
- Possible integration of two Arduinos in serial for rad hardening
- 5V and less than 0.36 W average power required





Arduino Pro (5V/16MHz)

IMU / GPS Telemetry Test Unit

## Electrical Power Subsystem

#### 3U Colony-1

- 20 Whr EPS/ Battery\* onboard
- 43 solar cells on 7 arrays
- 8.3v,5v,3.3v bus

Colony-1 (3U)

USNA AEROSPACE ENGINEERING

#### 1.5U PSAT

- 10 Whr EPS / Battery\*
- 16 Cells on 6 face arrays
- 2 Watts average power (tumbling)
- Possible integration with HaWK sun seeking solar arrays for more power



PSat (1.5U)

Clyde Space EPS



### **Power Required**

| BeagleBoard -xM |   |      |  |  |
|-----------------|---|------|--|--|
| Voltage (ave)   | V | 5.0  |  |  |
| Current         | А | 0.6  |  |  |
| Power           | W | 3.0  |  |  |
| Arduino         |   |      |  |  |
| Voltage (ave)   | V | 9.0  |  |  |
| Current         | А | 0.04 |  |  |
| Power           | W | 0.36 |  |  |

### Power Available (1<sup>st</sup> Order, Tumbling)

| Orientations | Number | % time in sun | Theta | P(Theta) | P(Time) | V(Theta) | V(Time) |
|--------------|--------|---------------|-------|----------|---------|----------|---------|
| Corner       | 8      | 30.77%        | 45    | 1.96     | 0.60    | 4.43     | 1.36    |
| 1.5U Face    | 4      | 15.38%        | 0     | 3.12     | 0.48    | 7.05     | 1.08    |
| 1.5U Edge    | 4      | 15.38%        | 45    | 2.20     | 0.33    | 4.99     | 0.77    |
| 1U Face      | 2      | 7.69%         | 0     | 2.08     | 0.16    | 4.7      | 0.36    |
| 1U Edge      | 8      | 30.77%        | 45    | 1.83     | 0.56    | 4.15     | 1.28    |
| Total        | 26     | 1             |       |          | 2.15    |          | 4.85    |

## Attitude Determination and Control Subsystem



3U Colony-1

- Full ADCS system with reactions wheels
- Limited ability to point satellite at ground stations due to drag
- 1.5U PSAT
  Passive magnetotorquer system
  Possible active ADCS with ArdulMU and

active magneto-

torquers

## Orbit and Launch Opportunities



Two potential launch opportunities:

- Deliver Jun 2014 for an Oct-Nov 2014 launch
- Deliver Jul 2014 for a Dec 2014 launch

Both launches are in LEO, elliptical (approx 400 – 750km) with approximately 60 degree inclincation.

### **Cost Analysis**



### 1<sup>st</sup> order estimated 1.5U satellite cost

| Subsystems         | Items             | Cost (\$)   |
|--------------------|-------------------|-------------|
| Structure          | Body              | \$1,450.00  |
| EPS                | 1.5U EPS + Batt   | \$5,700.00  |
| Solar Panels       | 1.5U Solar Panels | \$17,700.00 |
| C&DH               | Arduino           | \$100.00    |
| Payload            | Beagle Board      | \$150.00    |
|                    | Sensors           | \$500.00    |
| Comms              | Sband / UHF       | \$1,600.00  |
| Thermal Devices    | Estimate          | \$2,000.00  |
| ADCS               | Magnetorquer Rod  | \$1,300.00  |
| Wiring/ Harness    | Estimate          | \$4,000.00  |
| Support Structures | Estimate          | \$1,000.00  |
| Total Sa           | \$35,500.00       |             |

# Conclusions

USS Project Summary

### Feasibility



- The main concern for this project is power, still determining feasible duty cycle.
- The communications link is still in work, with design trades for power / gain / beamwidth still ongoing.
- Radiation is a concern with COTS hardware however hardening it would increase cost (why not send up two for the same price?)

### Next Steps



- Starting Fall 2013 USS will begin the final design phase of the satellite
- The project will become a "Capstone Project" at USNA (senior thesis)
- Test payload in an operational environment in a high altitude balloon

### **Acknowledgments**



Primary Advisor - CDR Allen Blocker Secondary Advisor - Asst. Prof. Jin Kang Coding Assistant - MIDN 2/C Ganesh Harihara

# **Questions?**



# **Unix Space Server**



Contact Information: MIDN Samuel Noah Sipe m146276@usna.edu • 317.504.5567



### Peak Power in Operational Modes

| Powered Devices   | Launch | Safe | Receive | Payload |
|-------------------|--------|------|---------|---------|
| Units in Watts    |        | Hold | Only    | Up      |
| Coms- UHF -TX     | OFF    | 1.7  | OFF     | 1.7     |
| Coms- UHF -RX     | OFF    | 0.2  | 0.2     | 0.2     |
| Coms- S Band -TX  | OFF    | OFF  | OFF     | 2       |
| Coms- S Band -RX  | OFF    | OFF  | 0.2     | 0.2     |
| C&DH - Arduino    | OFF    | 0.25 | 0.25    | 0.25    |
| EPS               | OFF    | 0.25 | 0.25    | 0.25    |
| PAY - BeagleBoard | OFF    | OFF  | 3       | 3       |
| ADCS              | OFF    | OFF  | OFF     | 0.1     |
| Peak Power        | 0      | 2.4  | 3.9     | 7.7     |
| Consumption       |        |      |         |         |



### Duty Cycles by Orbit

| Powered Devices   | Launch | Safe<br>Hold | Receive<br>Only | Payload<br>Up |
|-------------------|--------|--------------|-----------------|---------------|
| Coms- UHF -TX     | OFF    | 0.1          | OFF             | 0.1           |
| Coms- UHF -RX     | OFF    | 1            | 1               | 1             |
| Coms- S Band -TX  | OFF    | OFF          | OFF             | 0.25          |
| Coms- S Band -RX  | OFF    | OFF          | 1               | 1             |
| C&DH - Arduino    | OFF    | 1            | 1               | 1             |
| EPS               | OFF    | 1            | 1               | 1             |
| PAY - BeagleBoard | OFF    | OFF          | 0.25            | 1             |
| ADCS              | OFF    | OFF          | OFF             | 0.1           |



### Average Power Operational Modes

| Powered Devices   | Launch | Safe | Receive | Payload |
|-------------------|--------|------|---------|---------|
|                   |        | Hold | Only    | Up      |
| Coms- UHF -TX     | OFF    | 0.17 | OFF     | 0.17    |
| Coms- UHF -RX     | OFF    | 0.2  | 0.2     | 0.2     |
| Coms- S Band -TX  | OFF    | OFF  | OFF     | 0.5     |
| Coms- S Band -RX  | OFF    | OFF  | 0.2     | 0.2     |
| C&DH - Arduino    | OFF    | 0.25 | 0.25    | 0.25    |
| EPS               | OFF    | 0.25 | 0.25    | 0.25    |
| PAY - BeagleBoard | OFF    | OFF  | 0.75    | 3       |
| ADCS              | OFF    | OFF  | OFF     | 0.01    |
| Average Power     | 0      | 0.87 | 1.65    | 4.58    |
| Consumption       |        |      |         |         |