Mission Design Challenges for Multi-Manifest Missions

<u>Authors:</u> Lockheed Martin Gregory Kehrl (303) 514-9548 gregory.j.kehrl@Imco.com

ATK Matt Steele (801) 251-3540 matt.steele@atk.com

Athena[™]

LOCKHEED MARTIN

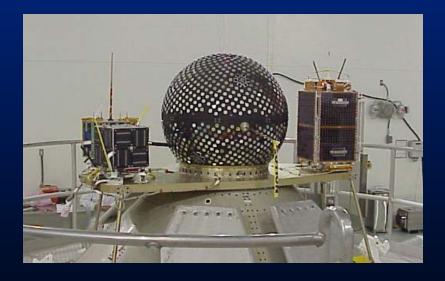
Multi-manifest Mission Design Challenges

- The increased complexity of deploying multiple small satellites and cubesats on multi-manifest missions requires special attention to mission design
- The challenges to executing multi-manifest missions span the entire spectrum of a launch service:
 - Technical and performance launch vehicle constraints
 - Multi-Customer contracting
 - Regulatory approvals (FAA, FTC, JSpOC, ITAR, etc)
 - Integration management, logistics, and facilities support infrastructure
 - Detailed mission design and flight software development
- Mastery of these challenges is the key to offering low cost reliable launch services to multiple small satellite customers

Multi-manifest mission stress all aspects of the launch service

- There are significant technical challenges to executing multimanifest missions. These include:
 - Integrating a variety of mass and volumes in a dynamic environment
 - Strong, low mass, low cost, multi-payload adapter system
 - Adapting the launch profile to accommodate a wide range of inclinations and orbital altitudes
 - Verification that all payloads will not adversely impact the mission or other payloads
 - Ensuring adequate ground communications
 - Ensuring no re-contact between deployments
 - Vehicle battery power utilization and management
 - Propellant utilization and optimization of Delta-V
 - Ensuring injection accuracy and minimizing orbital debris concerns

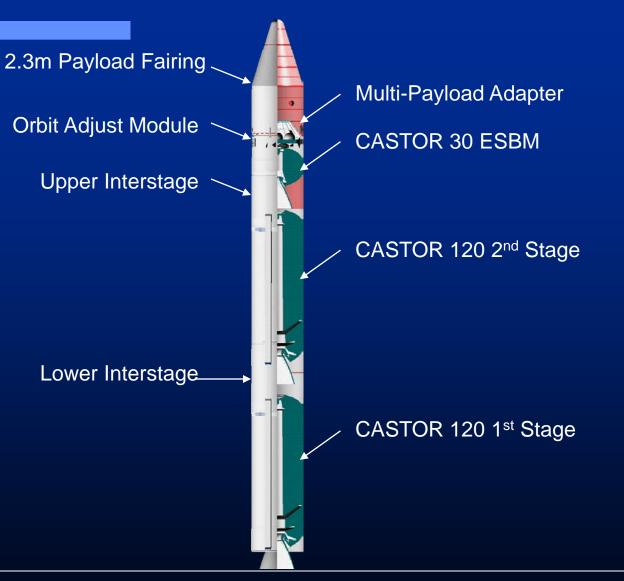
Multi-variable optimization required for mission success



Athena's Proven Multiple Payload Capability

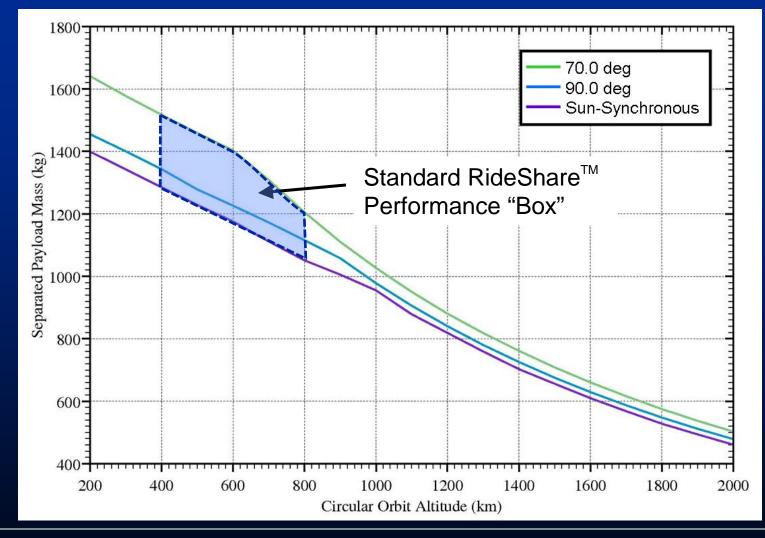
- Athena's multiple payload capability was successfully demonstrated on the NASA Kodiak Star Mission
 - Three Satellites to 800km
 - One Satellite to 500km
 - Injection errors < 2km & <5km

KLC Payload Processing Facility


In 2011 LM/ATK introduced our Athena RideShare[™] concept to the small satellite market

- Objective is to have annual Athena IIc launches from Kodiak
 - 70 degree to sun synch inclination, 400 to 800 km orbit(s)
- Multi-manifest mission so each of the ride share satellites can fly at an affordable price
- Accommodations for 4 9 ride share satellites
- Frequent flyers will get a discount on future Athena RideShare[™] flights
- P-POD opportunities are available on every flight
- There are no "primary" or "secondary" payloads everyone rides in the Athena bus, and we drive
- One "premium service" available: 1st injection event, set mission inclination and first orbit altitude

Athena IIc RideShare[™] Launch Vehicle



Athena IIc High Inclination Performance

Kodiak Launch Center – RideShare[™] Mission Site

Contractual Launch Service Relationships

P-POD Payload Integrators

Integrators contract P-POD

• NRO • SMC

NRL

• etc

NASA

UniversitiesInternationalCommercial

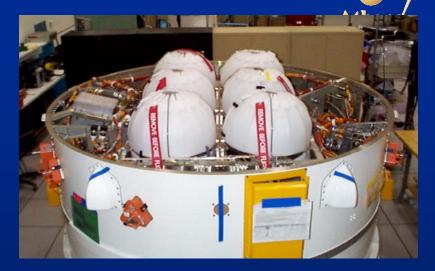
services for multiple customers

LM FFP contracts Secondary Payload: Space delivery service for up to 24 P-PODS

LM FFP contract <u>RideShare Payloads:</u> 4-9 @110kg – 440kg Multiple Ride Share Payload Customer Contracts

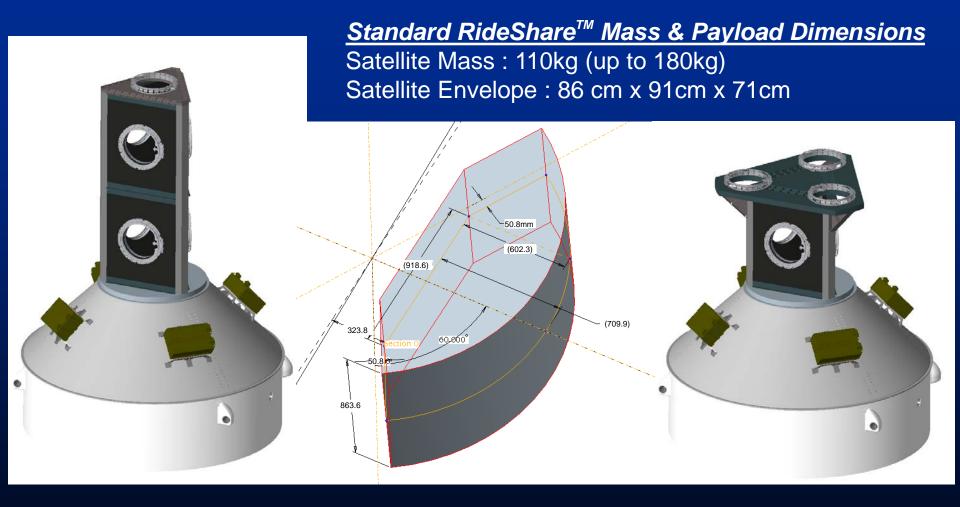
LM & ATK provide Athena IIc Launch Service

Launch from KLC

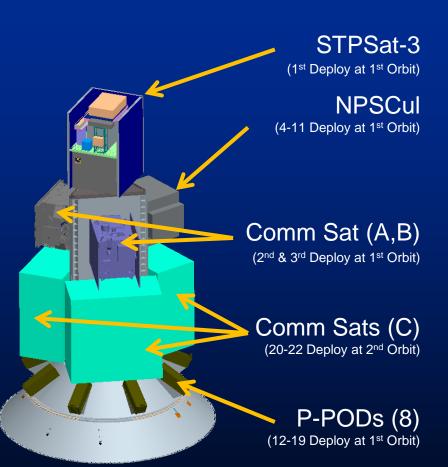

CubeSat Customers contract directly with Tyvak, TriSept or Spaceflight for integrated P-POD space lift services

Highly Capable Injection Stage is Key for Multi-Payloads

- Athena's standard Orbit Adjust Module (OAM) is the key to our multi-payload injection capabilities
 - Provides 2 orbit, 3 hour mission timelines, unlike other systems
 - Allows for multiple orbits on the same mission for maximum flexibility
 - Permits very precise orbit insertions for multiple satellites
 - "Store & Forward" communications ensures state vectors for all separation events are captured
 - End of life deorbit assist maneuver minimizes launch vehicle orbital debris



Initial Multi-Payload RideShare[™] Accommodations

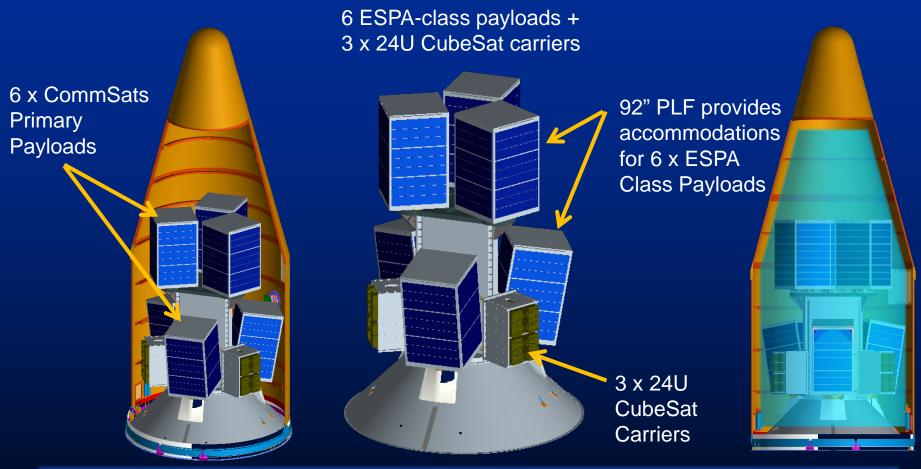


Multi-Payload Compatibility Assessment Phase

- In 2012 LM successfully completed an initial multi-payload compatibility assessment for the USAF (STPSat-3)
 - Detailed mission design and flight software development
 - Initial coupled loads assessment (CLA) performed with Moog CSA Engineering SoftRide incorporated into Multi-Payload Adapter (MPA) design
 - MPA development through PDR
 - STPSat-3 was Premium Service customer
 - Two additional commercial customers and 16 P-PODs to deploy on 1st orbit
 - Commercial customer to deploy 3 satellites on 2nd orbit

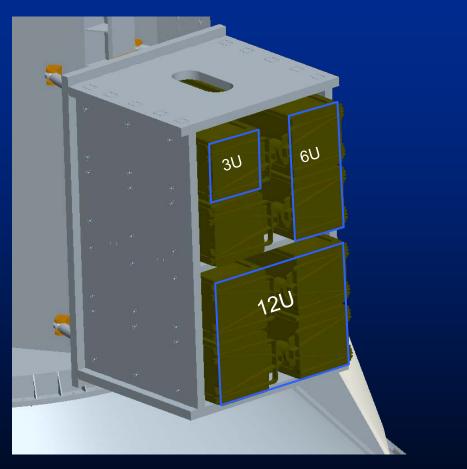
Multi-Payload Configuration Versatility Assessments

- Throughout 2011 and 2012 LM analyzed and completed mission design solutions for a wide variety of customer payload configurations
- Key objectives met:
 - Exploration of the limits of Athena system performance capabilities to accommodate wide mix of spacecraft mass/volumes and optimization of orbit maneuvering and insertion capabilities
 - Rapid integration and build of flight software mode phases through modular cataloging
 - Refinement in modeling OAM thrust profiles / usage curves for precise performance predictions
 - Detailing of modular MPA baseline design and harness routing solutions


Athena RideShare[™] mission design capability envelope fully defined

2015 & 2016 Commercial RideShare[™] Configuration

RideShare[™] performs up to 30 in orbit separation events


Capability to Fly 72U of CubeSats on each mission

Athena Composite P-POD Carrier (ACPC) – 3 per flight

Mix & Match:

- 24 x 3U P-PODs
- 12 x 6U containers
- 6 x 12U containers

2015 & 2016 RideShare[™] Mission Design

• Launch Location:

- Kodiak Launch Complex (KLC); Launch Pad 1 (LP-1)

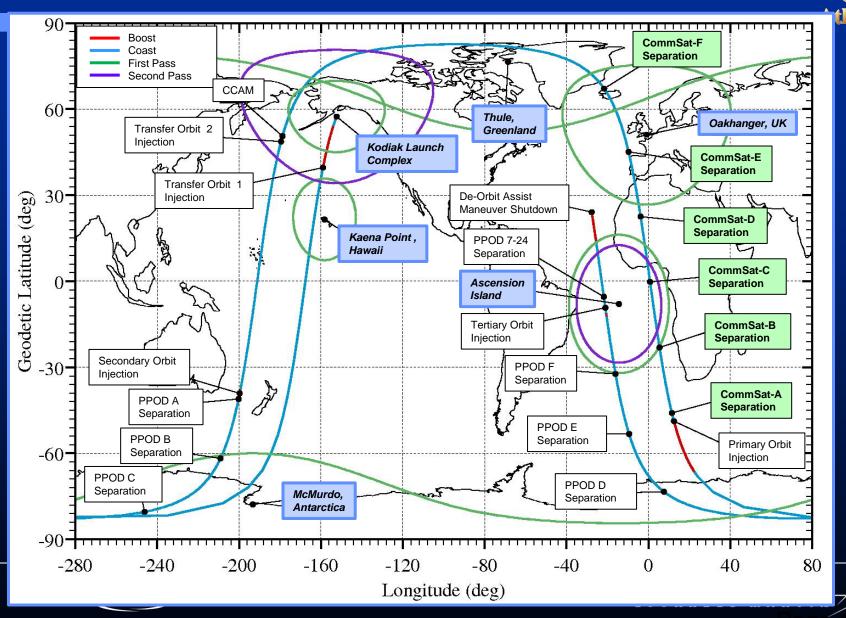
• Orbital Requirements and Assumptions

Parameter	Primary Orbit	Secondary Orbit	Tertiary Orbit
Altitude	515 km Circular*	475 km Circular*	450 x 455 km
Inclination (deg)	97.40	97.35	97.35

* First Spacecraft Deployment; Subsequent deployments can be in slightly elliptical orbits, if desired, to assist with Constellation Phasing/Spacing

- Launch Vehicle Performance Capability Accounts for:
 - Boost Phase Dispersions; Reserve DV/Propellant in OAM
 - Range/Flight Safety Requirements
 - Center of Gravity Offsets for Multiple Payloads
- No OAM Activity for 5 minutes following Each Primary Spacecraft Separation
- OAM Performs Contamination and Collision Avoidance Maneuver (CCAM) Following Final CommSat-Spacecraft Deployment (Small Inclination change)
- OAM Performs De-Orbit Assist Maneuver (DAM) After Completing All Payload Separation Events; Perigee Altitude < 148 km (< 80 nmi)
 - No Space Debris

Premium P-POD Deployment Description



- Six 3U P-PODS for this Deployment Sequence
- Second Orbit Conditions
 - Altitude: 475 km Circular (initial separation event altitude)
 - Inclination: 97.44 deg
- Mission Features/Options
 - Orbit Adjust Module (OAM) Maneuvers Spacecraft to the Desired Attitude and Attitude Rates Prior to Deployment
 - Separation State Vector Stored in Flight Software for Each Deployment and Transmitted to Next Available Ground Tracking Station (Example: Ascension Island Second Pass)
 - Post-Deployment Wait (No Thruster Activity on OAM) for 5 min Following S/C Separation
 - S/C Spacing and Eliminates Potential Thrust Exhaust Contamination
 - Optional ΔV Burn Performed After Post-Deployment Wait (Example: 3-5 ft/s)
 - Additional Spacing or Slight Plane Change
 - Repeat: OAM Maneuvers to the Desired Attitude and Attitude Rates for Second S/C Deployment....

RideShare[™] 2015 & 2016 Mission Ground Track

18

- Standard Services :
 - Full Mission Integration Experience
 - Unique ICD w/ Requirement Verification Matrix
 - Complete CDRL Analyses & Reports
 - Processing Facility KLC PPF (Shared)
 - SoftRide load attenuation if required
 - 15", 12" or 8" MLB Separation System
 - 2 PLF Access Doors
 - Environmentally Conditioned PLF (Encapsulation thru Launch)
 - Release Signal/Discrete
 - Highly Accurate Orbit Injection
 - Post Flight Report

The Future Requires Low Cost Access to Space

- Buying a rocket for every mission is too expensive
- There needs to be a cost effective approach to space access
 - The laws of physics don't change
 - Costs for Delta-V are not going to significantly decrease
- However, we have expanded the launch services business model for small satellite customers looking for reliable low cost access to space
- Athena Launch Services plans to offer -
 - Annual RideShare[™] missions
 - Payload opportunities that meet customer price points

Athena Offers Full Service at Fixed Prices

