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Irene forecasts on track; not up to speed
on wind

(A.P. wire service, August 29, 2011)

by Seth Borenstein
& ChristineAmario:

~ Hurricane Irene
was no mystery to
._":fﬂrccalsters. They
* “knew where it was
going. But what it would do when it got there
was another matter. Predicting a storm's
strength still baffles meteorologists. Every
giant step in figuring out the path highlights
how little progress they've made on another
crucial question: How strong?

...the forecast after Irene hit the Bahamas had
it staying as a Category 3 and possibly
increasing to a Category 4. But it weakened
and hit as a Category 1...“We're not
completely sure how the interplay of various
factors is causing the strength of a storm to
change.” [National Hurricane Center Director
Bill] Read said. One theory is that a storm's
strength is dependent on the storm's inner core.
[rene never had a classic, fully formed eye wall
even going through the Bahamas as a Category
3. “Why it did that, we don't know,” Read said.
“That's a gap in the science.”
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CYGNSS Science Goals & Objectives

e CYGNSS Science Goal

— Understand the coupling between ocean surface properties, moist
atmospheric thermodynamics, radiation, and convective dynamics in the inner
core of a tropical cyclone (TC)

* CYGNSS Objectives

— Measure ocean surface wind speed in all precipitating conditions, including
those experienced in the TC eyewall

— Measure ocean surface wind speed in the TC inner core with sufficient
frequency to resolve genesis and rapid intensification

* Questions Answered by CYGNSS

— How do the dynamics within TCs determine their intensity at landfall?
* CYGNSS measures surface winds in the TC inner core with a 4 hr average revisit time,
enabling the dynamics of the TC to be investigated
— How do moist atmospheric thermodynamics, radiation and convection
interact to control the development of TCs?

* CYGNSS measures wind speed through intense rain fall, enabling researchers to better
understand the complex feedback between mass and energy interchange processes
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Instrument: Bi-Static Quasi-Specular
Ocean Surface Scatterometry
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Performance in Intense Precipitation
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CYGNSS Constellation

®Blue dots are
GPS satellites

@ Yellow dots are
CYGNSS
Cbservatories
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pap overlaid on historical record of all named (wind speed
s during 2000-2009. Red indicates Cat 1 or higher TC.
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Links to CubeSats

e CYGNSS began as a CubeSat concept

e CubeSats offer unique science capabilities
— Distributed sensing
— Improved revisit time

 CubeSats are a new way of looking at reliability
— Observatory-level redundancy
— If the costs are low, it is okay if you loose 1 or more

e NASA is embracing the CubeSat movement
— The perfect answer to the sequestor
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Microsat Characteristics

Configuration: Accommodate DDMI antennas and 100% DDMI duty cycle
Power: 48.8 W (Available: 70.1 W EOL, Margin: 30.3%)

Attitude: 3-axis stabilized, pitch momentum-biased nadir-pointed, 2.1° (30)
knowledge and 2.3° (30) control (horizon sensors, magnetometer, pitch momentum

wheel, torque rods)

Communication: 1.25 Mbps S-band with 6.7 dB margin provides 31% Science data

downlink margin
Mass (ea): 17.6 kg
Orbit: 500 km, i=35°
Launch:10-Sept-2016
Bus: SwRI
Instrument: Surrey
Avionics: SWRI

Deployment Module:
NASA Ames

Contract: NASA Langley

Observatory and Component Definition

S/A Wing (x2) Zenith S-band Antenna ; 7569(? ;:1 ((gé%\fg;’i)d) Stowed (Launch Configuration)
/ Zenith DDMI Antenna E
‘L/‘( g_}
Thermal Radiator .

Horizon Sensors

Torque Rod
(20f3)

Avionics
S/A (ram)

\_\_»-ﬁ

Momentum Wheel
Batteries (x2)

DMR

S/A During Deployment

Nadir Sci Diplexer & SIA Deployed (Flt Config)

Hybrid

Iz (zenith)
Y

X (ram)

Antennas (2)

Nadir S-band
Antenna

Nadir Baseplate
& Radiator
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uSat Block Diagram — Avionics Highlighted
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EPS Requirements

SwWRI
Peak Power Tracker

Requirement | Performance EnerSys

Instrument power (orbit avg) 10W Complies Battery
Instrument duty cycle Continuous | Complies
S/A power (orbit avg, EOL worse case)| =248.8W 70.1W
Minimum State-of-Charge (EOL @
SNC longest eclipse) >10% 80.7%
Solar Arra
] SWRI 8
Low § =&
Voltage | |&=%
e S Power | S5
Deployed Stowed Supply
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CDS Requirements

Requirement Performance

Processor performance >14.5 MIPS 22 MIPS
(52% Margin)
Data Storage (>10 days) (370 MB 4GB*
Max Sci data storage rate |>4.2 kbps 100 Mbps*
~ |Max data playback rate 1.25 Mbps 300 Mbps*
AntDevCo Cmd Storage >100 RTS/ATS 15 cmd | Complies
Antenna sequences
All Comm links margin >3 dB Complies
(§F.2.4.1)
* Excess capability results from the use of existing heritage designs

i SwRI
| S-Band Transceiver

b Merrimac

] WEST CALDWELL, M1 F2C8A12457

Merrimac
Coupler/Duplexer
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ADCS Requirements

Parameter/ltem Value

Earth horizon and mag
field reference
Aftitude 0.5 deg accuracy, +5 deg

L Horizon Sensaor
Determination range

10 nT sensitivity, +/- ] _
50,000 nT range Sinclair

Magnetometer

Honeywell
Magnetometer 3-axis stabilized, Momentum Wheel

momentum biased

30 mNms @ 5600 rpm,
2mNm torque

1 Am*2, residual moment
< 0.1 Am"2

Aftitude Control | Mom Wheel

Torque Rods

SatServ

MAI Torque Rod

Horizon Sensor
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Lot’s of Great People

. Tim Henderson, ADCS Subsystem Abraham Rademacher, . Marissa Brummitt, Other
Engineer Deployment Module Lead Professional

. Robert Atlas, Co-I Engineer . Chris Ruf, Principal Investigator

e Paul Chang, Co-I *  Derek Posselt, Deputy Pl/Co-| «  John Scherrer, Project Manager

e James Cutler, Co-l *  Greg Fletcher, Deputy Project ~ «  Randy Rose, Project Systems

e James Garrison, Co-l Manager _ Engineer

«  Scott Gleason, Co-| . X\:]a;'lcisrtLockhart, Electrical Power ﬁﬂnedr:\%vgrOIB”en' Science Team

* Zorana JE|enak, Co-l b Robert Klar, Fllght Software ° Jim Raines, SOC Engineer

. Stephen Katzberg, Co-l Technical Lead ’

*  Sharanya Majumdar, Co-| - Scott Miller, FSW Team T fephen Musko, SOC Lead

*  Manuel Martin-Neira, Co-| *  AlanHenry, | &T Lead «  Ronnie Killough, Software Systems

* Donald Walter, Co-| *  Aaron Ridley, Instrument Scientist/ Lead

e Valery Zavorotny, Co-l Co-l e John Bultena, Spacecraft

. Joel Johnson, Co-l . Debbie Shaffer, ITAR Lead SystemsAnalysis

. John Dickinson, Comm, Data, and ° Joerg Gerhardus, Mission . Jon VanNorde, Thermal Analyst
Power Subsystem Lead Assurance e Will Wells, Systems Analyst

e Brian Johnson, DDMI Program * lillian Redfern, Mission e Damen Provost, UM Project
Magager Operations Analyst Manager

. Martin Unwin, DDMI Systems . Michael Vincent, Mission . Bruce Block, UM Technical
Engineer Operations Analyst Manager

. Robert Ricks, Deployment Module® Chelle Reno, Mission Operations
Electrical Engineer Consultant

. Elwood Agasid, Deployment . Debi Rose, MOC Manager, Mission
Module Lead Ops Lead
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link

Shameless Plug: Check out the CubeSat Avionics Section (7.7)
at the IEEE Aerospace Conference in Big Sky Montana
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http://www.youtube.com/watch?v=W_x_elzz6pE�
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