

CYGNSS: The Cyclone Global Navigation Satellite System's CubeSat Foundations

John Dickinson (SwRI) john.dickinson@swri.edu 210-522-5826

Dr. Chris Ruf (PI – UM), Randy Rose (SwRI), Aaron Ridley (UM), Buddy Walls (SwRI)

When Forecasting Goes Wrong: Katrina

Irene forecasts on track; not up to speed on wind

(A.P. wire service, August 29, 2011)

was another matter. Predicting a storm's strength is dependent on the storm's inner core. strength still baffles meteorologists. Every Irene never had a classic, fully formed eye wall giant step in figuring out the path highlights even going through the Bahamas as a Category how little progress they've made on another 3. "Why it did that, we don't know," Read said. crucial question: How strong?

by Seth Borenstein ...the forecast after Irene hit the Bahamas had & ChristineAmario: it staying as a Category 3 and possibly increasing to a Category 4. But it weakened Hurricane Irene and hit as a Category 1..."We're not was no mystery to completely sure how the interplay of various forecasters. They factors is causing the strength of a storm to knew where it was change," [National Hurricane Center Director going. But what it would do when it got there Bill] Read said. One theory is that a storm's

"That's a gap in the science."

CYGNSS Science Goals & Objectives

CYGNSS Science Goal

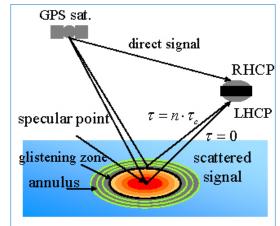
 Understand the coupling between ocean surface properties, moist atmospheric thermodynamics, radiation, and convective dynamics in the inner core of a tropical cyclone (TC)

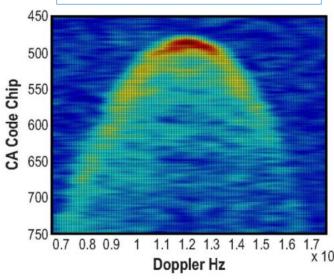
CYGNSS Objectives

- Measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall
- Measure ocean surface wind speed in the TC inner core with sufficient frequency to resolve genesis and rapid intensification

Questions Answered by CYGNSS

- How do the dynamics within TCs determine their intensity at landfall?
 - CYGNSS measures surface winds in the TC inner core with a 4 hr average revisit time, enabling the dynamics of the TC to be investigated
- How do moist atmospheric thermodynamics, radiation and convection interact to control the development of TCs?
 - CYGNSS measures wind speed through intense rain fall, enabling researchers to better understand the complex feedback between mass and energy interchange processes





Instrument: Bi-Static Quasi-Specular Ocean Surface Scatterometry

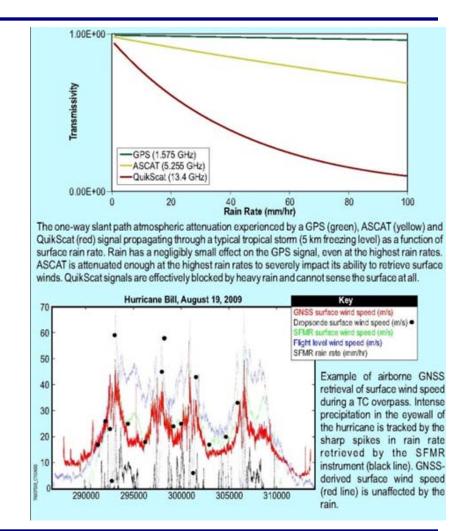
- Bi-static scattering geometry with GPS direct signal proving reference and quasi-specular forward scattered signal containing ocean surface roughness information
- Scattering cross-section image measured by UK-DMC-1 demonstration spaceborne mission with variable lag correlation and Doppler shift enabling resolution

25 April 2013

Analogy: Reflection of the Moon

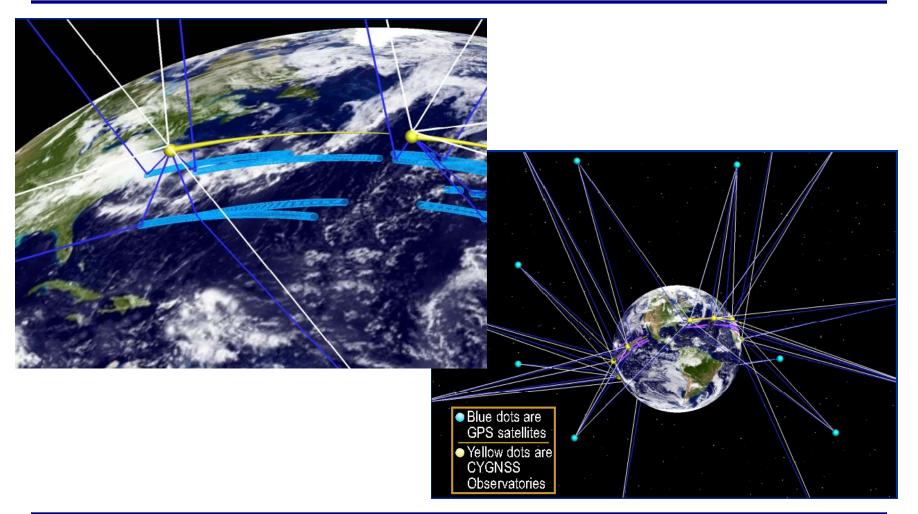
Moderate wind speed

Low wind speed

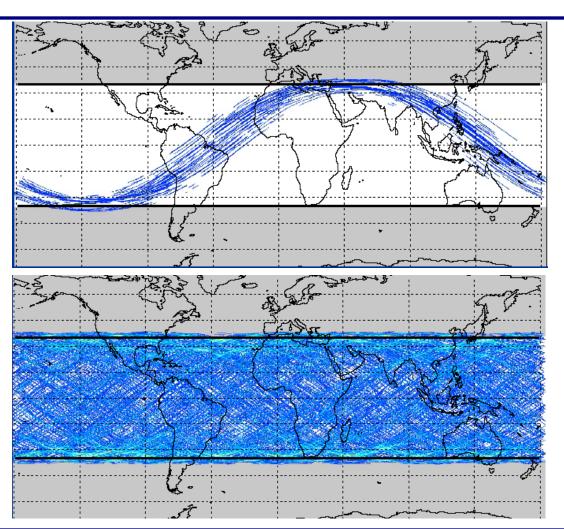


Performance in Intense Precipitation

- One-way transmissivity through typical tropical storm (5 km freezing level) for: GPS (1.575 GHz), ASCAT (5.255 GHz), QSCAT (13.4 GHz)
- Airborne GNSS wind speed retrieval during overpass of Hurricane Bill on 19 Aug 2009. Strong rain bands (black) do not noticeably affect the GNSS retrieved wind (red)



CYGNSS Constellation



CYGNSS Earth Coverage

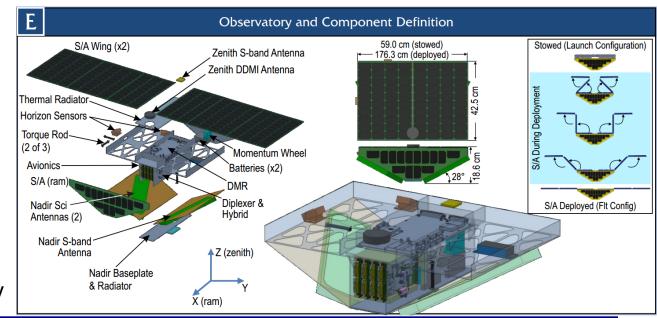
- 90 min (one orbit) coverage showing all specular reflection contacts by each of 8 s/c
- 24 hr coverage provides nearly gap free spatial sampling within +/- 35 deg orbit inclination

25 April 2013

CYGNSS Historical Storm Track Overlay

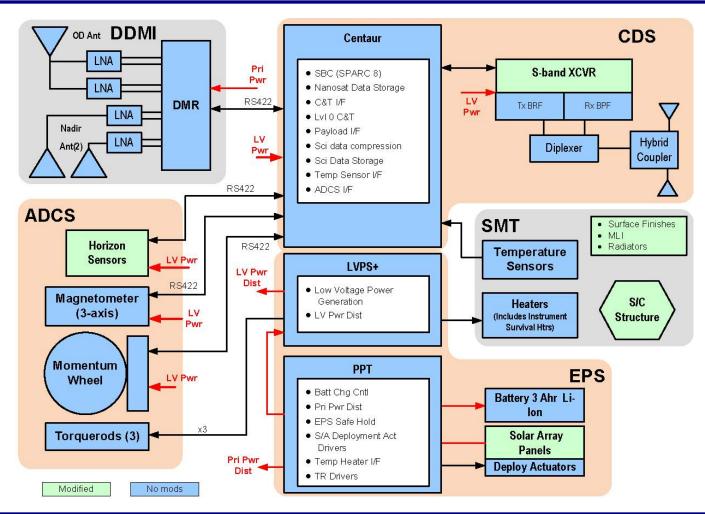
Links to CubeSats

- CYGNSS began as a CubeSat concept
- CubeSats offer unique science capabilities
 - Distributed sensing
 - Improved revisit time
- CubeSats are a new way of looking at reliability
 - Observatory-level redundancy
 - If the costs are low, it is okay if you loose 1 or more
- NASA is embracing the CubeSat movement
 - The perfect answer to the sequestor



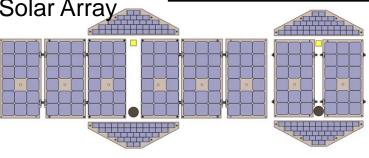
Microsat Characteristics

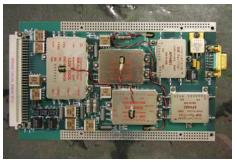
- Configuration: Accommodate DDMI antennas and 100% DDMI duty cycle
- Power: 48.8 W (Available: 70.1 W EOL, Margin: 30.3%)
- Attitude: 3-axis stabilized, pitch momentum-biased nadir-pointed, 2.1° (3σ) knowledge and 2.3° (3σ) control (horizon sensors, magnetometer, pitch momentum wheel, torque rods)
- Communication: 1.25 Mbps S-band with 6.7 dB margin provides 31% Science data downlink margin
- Mass (ea): 17.6 kg
- Orbit: 500 km, i=35°
- Launch:10-Sept-2016
- Bus: SwRI
- Instrument: Surrey
- Avionics: SwRI
- Deployment Module:
 NASA Ames
- Contract: NASA Langley



μSat Block Diagram – Avionics Highlighted

EPS Requirements


SwRI Peak Power Tracker


EnerSys Battery

Instrument power (orbit avg)10WCompliesInstrument duty cycleContinuousCompliesS/A power (orbit avg, EOL worse case)≥48.8W70.1WMinimum State-of-Charge (EOL @ longest eclipse)>70%80.7%

SNC Solar Array

SwRI Low Voltage Power Supply

Deployed

Stowed

CDS Requirements

AntDevCo Antenna

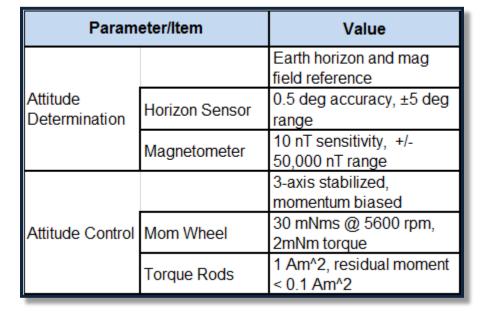
	Requirement	Performance
Processor performance	≥14.5 MIPS	22 MIPS (52% Margin)
Data Storage (>10 days)	370 MB	4 GB*
Max Sci data storage rate	>4.2 kbps	100 Mbps*
Max data playback rate	1.25 Mbps	300 Mbps*
Cmd Storage	>100 RTS/ATS 15 cmd sequences	Complies
All Comm links margin	>3 dB	Complies (§F.2.4.1)

Excess capability results from the use of existing heritage designs

SwRI S-Band Transceiver

SwRI C&DH

Merrimac Coupler/Duplexer



ADCS Requirements

Honeywell Magnetometer

Sinclair Momentum Wheel

MAI Horizon Sensor

Lot's of Great People

- Tim Henderson, ADCS Subsystem
 Engineer
- Robert Atlas, Co-I
- Paul Chang, Co-I
- James Cutler, Co-I
- James Garrison, Co-I
- Scott Gleason, Co-I
- Zorana Jelenak, Co-I
- Stephen Katzberg, Co-I
- Sharanya Majumdar, Co-I
- Manuel Martin-Neira, Co-I
- Donald Walter, Co-I
- Valery Zavorotny, Co-I
- Joel Johnson, Co-I
- John Dickinson, Comm, Data, and Power Subsystem Lead
- Brian Johnson, DDMI Program Magager
- Martin Unwin, DDMI Systems Engineer
- Robert Ricks, Deployment Module
 Electrical Engineer
- Elwood Agasid, Deployment Module Lead

- Abraham Rademacher, Deployment Module Lead Engineer
- Derek Posselt, Deputy PI/Co-I
- Greg Fletcher, Deputy Project Manager
- Walter Lockhart, Electrical Power Analyst
- Robert Klar, Flight Software Technical Lead
- Scott Miller, FSW Team
- Alan Henry, I & T Lead
- Aaron Ridley, Instrument Scientist/ Co-I
- Debbie Shaffer, ITAR Lead
 - Joerg Gerhardus, Mission Assurance
- Jillian Redfern , Mission Operations Analyst
- Michael Vincent, Mission Operations Analyst
 - Chelle Reno, Mission Operations Consultant
 - Debi Rose, MOC Manager, Mission Ops Lead

- Marissa Brummitt, Other Professional
- Chris Ruf, Principal Investigator
- John Scherrer, Project Manager
- Randy Rose, Project Systems Engineer
- Andrew O'Brien, Science Team Member
- Jim Raines, SOC Engineer
- Stephen Musko, SOC Lead Engineer
 - Ronnie Killough, Software Systems Lead
 - John Bultena, Spacecraft SystemsAnalysis
- Jon VanNorde, Thermal Analyst
- Will Wells, Systems Analyst
- Damen Provost, UM Project Manager
- Bruce Block, UM Technical Manager

Shameless Plug: Check out the CubeSat Avionics Section (7.7) at the IEEE Aerospace Conference in Big Sky Montana

