

Mission Overview

2013 CubeSat Developers Workshop

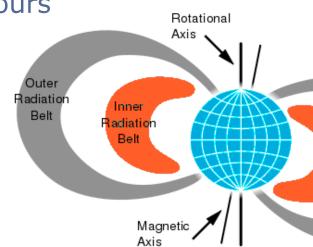
University of California, Los Angeles April 25, 2013

Electron Losses and Fields Investigation

- 3U Space Weather CubeSat, 4.0kg
- Exploring the mechanisms responsible for the loss of relativistic electrons from the radiation belts
- Spin Stabilized @ 20RPM
- Shortlisted but not selected for NSF
- Participant in AFRL's University Nanosat Program (NS-8)

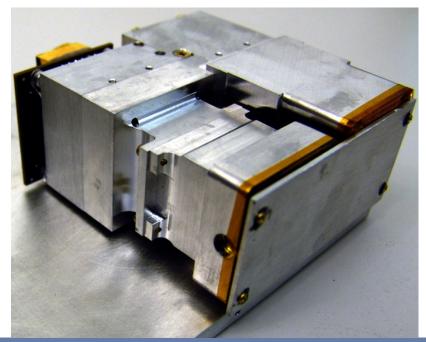
Instruments:

- Energetic Particle Detector Ions (EPDI)
- Energetic Particle Detector Electron (EPDE)
- Fluxgate Magnetometer (FGM) on 75cm stacer boom

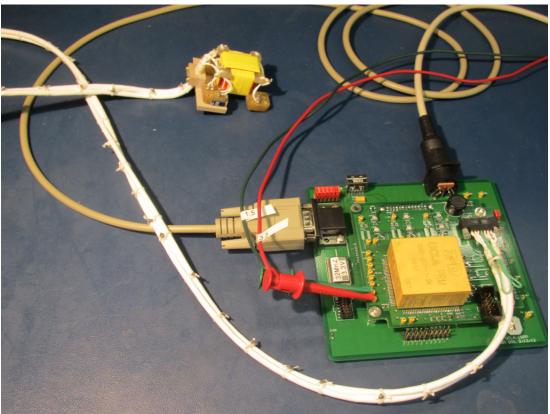


ELFIN SCIENCE REQUIREMENTS

- Observe energetic particle populations
 - B-field within 15° of spin plane during observation
 - Observe L shells 3-8 at least every 6 hours
 - Latitude resolution of < 0.5° /spin
 - Pitch angle resolution of < 30°</p>
- Orbital Requirements:
 - Inclination > 65°
 - Satisfies L shell & frequency criteria
 - Perigee > 400 km
 - Atmosphere absorbs particles; can't measure below this altitude
 - Apogee < 6000 km</p>
 - Loss cone shrinks with altitude; above this it cannot be resolved
 - Apogee limited to < 2500 km due to thermal, comm, radiation, deorbit
- 6 month nominal mission (3 month minimum)
 - Observe at least one geomagnetic storm



ELFIN ENERGETIC PARTICLE DETECTOR

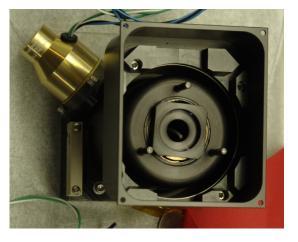

- Energetic Particle Detector Electrons (EPDE)
 - 50keV 4.2MeV (6 channels)
 - 7 Pulse Height Analysis sub channels < 1MeV</p>
 - 1100mW (incl. IDPU)
- Energetic Particle Detector Ions (EPDI)
 - 50keV 500keV (8PHA sub channels)
 - 2x MSX03-1000 detectors
 - **300mW**

ELFIN FLUXGATE MAGNETOMETER

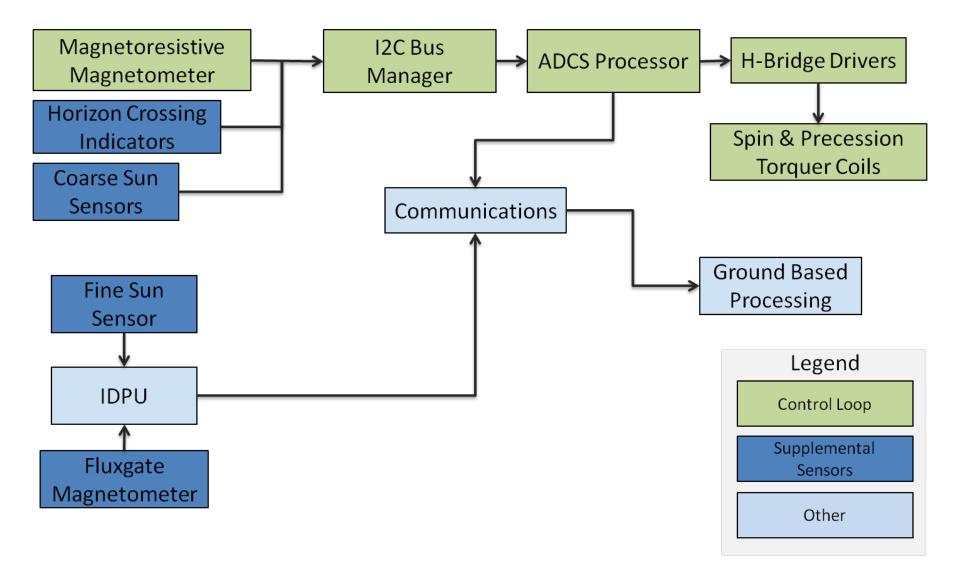
- Fluxgate Magnetometer (FGM)
 - DC-64Hz (128Hz sample rate); 96dB linearity
 - 55,000nT range, 10pT resolution
 - 100pT noise, 610mW

- Early Orbit Operations
 - Verify & maintain power positive state
 - Deploy antennas
 - Collect ADCS data (CSS, MRM)
 - Beacon of critical health information
- Checkout (<2 weeks)
 - Stacer boom deploy
 - Initialize Fluxgate Magnetometer
 - FGM orientation determination
 - Detumble & partially spin-up to ~3RPM
 - Characterize antenna performance
 - Characterize ADCS sensors (FSS, HCIs)
 - Initialize Energetic Particle Detector
 - Precess to science attitude & spin-up 20RPM

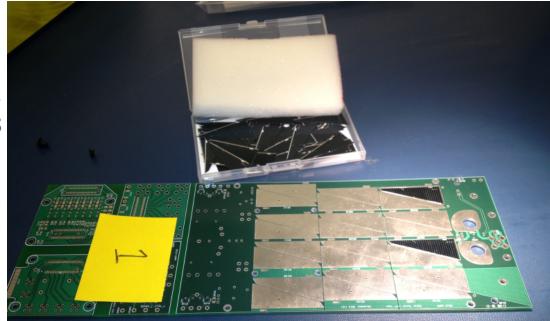
ELFIN CONCEPT OF OPERATIONS


- Science Phase (3 6+ months)
 - Observations (4 60 per day)
 - # of observations f(inclination, altitude)
 - Observations prioritized based on expected quality
 - Some observation zones may be skipped due to attitude
 - Each observation lasts ~250 seconds
 - Duration tuned for power & data volume
 - Downlink (1 4 per day)
 - Two ground stations (UCLA & WPI)
 - Prime pass includes spacecraft housekeeping telemetry and science summary
 - Science summary is automatically processed
 - If summary scores highly selective science download is scheduled
 - ADCS (daily or weekly)
 - Spin vector ~orbit normal if sun-synchronous orbit
 - Spin vector needs to precess 3.6°/day
 - 1/4 RPM/day despin (@ 20RPM) expected

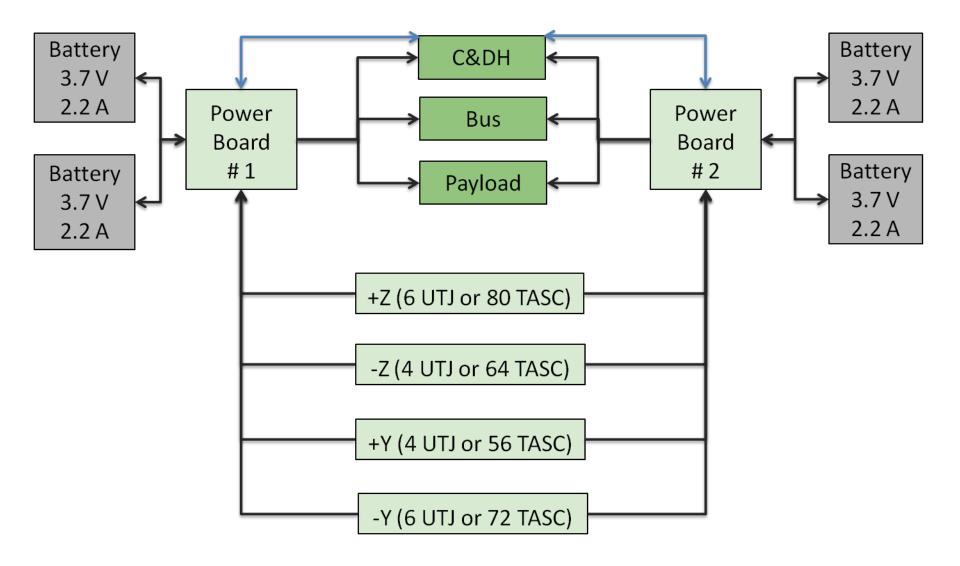
- 20RPM spinner
 - Only a handful of spinners exist, most slower, some faster
 - A lot of them are inadvertent spinners (or tumblers)
- Deployable fluxgate magnetometer
 - Magnetic cleanliness
 - 75cm stacer (Kaleva Design)
- Substantial payload & longevity
 - EPD shielding is heavy
 - We have to wait for a storm
 - mission life is important
- Moderate instrument data volume (~2.63 MiB/day)
 - 4 downlinks/day (2 ground stations)
 - Not a high speed downlink
 - but not run-of-the-mill 1200 baud FM AX.25 packet either



- Electrical Power Subsystem
 - Reduced power generation (2.4W AAOAP)
 - Dynamic power over a revolution
- Attitude Determination & Control Subsystem
 - Spinning is rare & usually avoided; little/no COTS
 - High-efficiency magnetotorquers
 - Nutation & damping modeling
- Mechanical
 - Need to balance moments of inertia
 - Four deployable antennas (including stacer)
- Communications
 - No nadir tracking omni-directionality is key
 - Spin fading

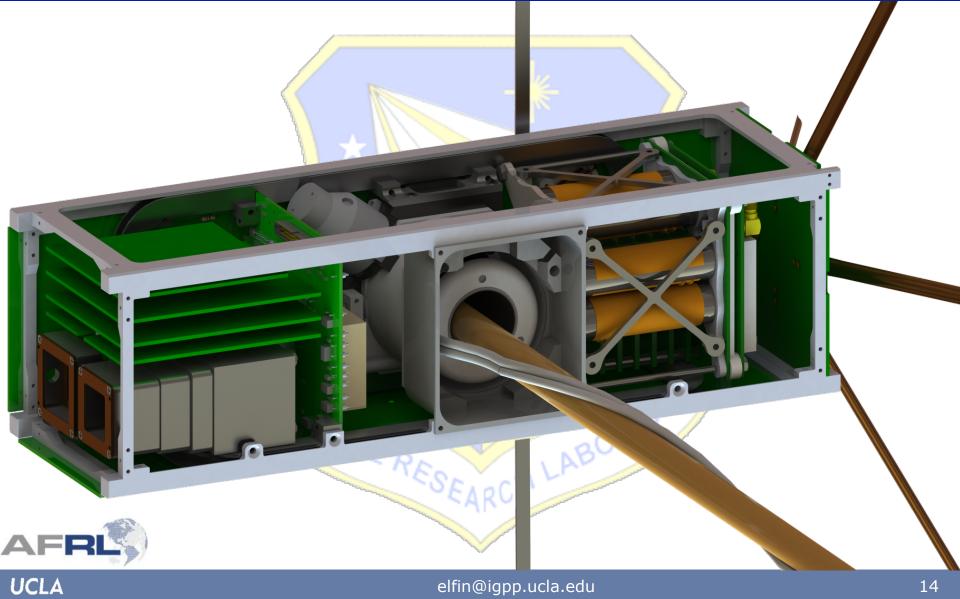


ELFIN EPS: ELECTRICAL POWER SUBSYSTEM



- Panels developed in-house
 - Magnetic cleanliness not a design driver in COTS panels
- UTJ vs TASC remains an ongoing trade
 - Subsystem accommodations result in higher BOL power from TASC than UTJ due to higher packing factor
 - TASC is not a CIC, so lower EOL
 - Building TASC panels now
 - On-orbit longevity & assembly challenges key considerations




Rence Research Longited

- Ground segment
 - 3 stations; 2 @ UCLA, 1 @ WPI (Mass)
 - 4.45MiB/day (4 passes; 50% margin)
 - 22 dBi UHF, 15 dBi VHF for UCLA primary
- Space segment
 - Redundant Astrodev Li-1 radios baselined
 - 440MHz GMSK; 250mW 4W RF
 - Additional inhibit to comply with LSP-REQ-317.01A
 - Stepped throttling of RF power to leverage link dynamics
 - Dedicated uplink and downlink dipoles
 - One pair each in axial and radial planes
 - Stacer boom is radial VHF monopole
- 19.2 kbaud V/U (VHF up, UHF down)
 - Likely "Amateur-like" w/ experimental license
 - Protocol TBD; FX.25 (AX.25+FEC) is ~17% overhead

