Microsized Microwave Atmospheric Satellite (MicroMAS)

K. Cahoy, R. Kingsbury, E. Peters, A. Marinan, M. Prinkey, E. Wise, P. Dave, S. Paek, C. Pong, D. Miller, D. Sklair, B. Coffee, L. Orrego, E. Main, K. Frey, R. Aniceto, P. Vaidyanathan

- About MicroMAS
- Movies
- Key design features
- Integration and test
 - Stack buildup
 - ADCS
 - Mass mockup
- Path forward
- Long term goal: constellation

Hurricanes, Tropical Storms, and Typhoons

- Super Typhoon
 Pongsona
 (Dec 8, 2002)
 - MODIS image (Terra)
 - Want the core and water vapor with altitude
 - Microwave radiometers do this

"Looking them in the eye"

• Atmospheric Infrared Sounder (AIRS) with Advanced Microwave Sounding Unit (AMSU) on Aqua (Sun-synch)

Cloud Penetration

• MicroMAS 118 GHz, 9 channels

Temperature vs. Altitude

• Channels sample different altitudes

- Currently in sun-synch orbits
 - Twice daily revisits
 - Better temporal coverage with LEO CubeSats (90 min)
 - Lower altitude, better signal + resolution
- Cost
 - \$1B vs 1M
- Replaceable
- Distribute channels

AIRS/AMSU (NASA Aqua) Mosaic of Ascending Orbits on Sep 6, 2002

MicroMAS modeled performance

Super Typhoon Pongsona (Dec 8, 2002)

MicroMAS

<u>http://www.youtube.com/watch?v=hY3YMs5Z</u>
 <u>lb0&feature=youtu.be</u>

Objectives

- Focus on hurricanes + severe weather
- 500-km orbit altitude
- 25-km pixel diameter at nadir (cross-track scan out to ±50°)
- 1 K absolute accuracy
 - 0.3 K sensitivity
- Geolocation error threshold
 52 arcmin
 - 30% of 25 km pixel diameter at altitude of 500 km
- 20 kbps (avg) downlink
- 12 W (avg) power
- One year mission lifetime
- 2014 launch by NASA ELaNa

Design Overview

- 3U CubeSat
- 1U Payload + 2U Bus connected via custom scanner assembly
- 4, 2U double-sided deployed and bodymounted solar panels
- Deployed measuring tape antenna
- Payload (MIT LL) 00 Bus (MIT Campus)
- MAI 400 ADCS Module

Design Overview

Illii

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400

- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels

- Bottom Interface Plate
- MAI-400
- Bus Stack
 - Chassis Base Plate
 - Bottom Interface Board
 - EPS
 - Radio
 - Motherboard
 - Battery
 - Top Interface Board
- Chassis
- Scanner Assembly
- Antenna Assembly
- Solar Panels (stowed)

Getting it to spin

- Brushless dc zero cogging motor, controller
- Encoder

Scanner Assembly Movie

14117

Radiation Testing

- Cobalt-60 TID testing of critical components.
- Mission dose: **1.2 krad** (SPENVIS)
- All devic after 8kr
- Test limitations:
 - No SEL or SEU testing
 - Low sample sizes
- Upcoming test: TCXO, another PIC

es passed functional tests	PIC24	
rad dose.		
		5

Radiation Testing

TID Tolerance of Popular CubeSat Components

Abstract—In this paper we report total dose test results COTS components commonly used on CubeSats. We investig a variety of analog integrated ciruits, a popular microcontro (PIC24) as well as SD memory cards.

I. INTRODUCTION

In this paper we present the results from total ioniz dose (TID) testing that was completed for components u in the MicroMAS satellite. MicroMAS, the Micro-sized 1 crowave Atmospheric Satellite, is a 3U CubeSat under ju development by the Space Systems Lab at MIT and Linc Laboratory [1]. This three-axis stabilized CubeSat will ca a state of the art passive microwave radiometer. In order

Fig. 1. Test jig used for TID tests

TABLE I FPF2700 Measurement Data

DUT	Dose	I _{trip} (A)	R_{ON} ($m\Omega$)	V_{OFF} (mV)	I_Q (μA)
#1	0 krad	0.447	162	2.1	92
#1	8 krad	0.442	90	0.8	89
#2	0 krad	0.509	156	1.6	92
#2	24 krad	0.505	77.2	1.5	105

Kingsbury, et al. NSREC 2013

TABLE II MAX3221-EP MEASUREMENT DATA

DUT	Dose	I_S (mA)	V _{open} (V)	V_{load} (V)	t_{HL} (ns)	t_{LH} (ns)
#1	0 krad	0.36	L: -5.579 H: +5.578	L: -5.331 H: +5.429	560	400
#1	8 krad	0.43	L: -5.420 H: +5.484	L: -5.248 H: +5.344	620	430
#2	0 krad	0.33	L: -5.516 H: +5.517	L: -5.316 H: +5.363	580	440
#2	24 krad	0.70	L: +0.140 H: +0.047	L: +0.004 H: +0.000	N/A	N/A

B. MAX3221-EP RS232 Interface

The MAX3221-EP is a TIA/EIA-232 compliant line transceiver that can be powered from a 3.3V power supply. This device contains a charge pump circuit that is used to produce the necessary RS-232 signalling levels. The following device parameters were selected for TID characterization:

- No-load supply current (I_S)
- Driver output voltages without load (V____)
- Want to test PIC24FJ256GB210 (new option 98 vs. 16 kB RAM) and TCXO (FOX924B-16.000)

Integration & Test I

Elmo Hornet motor controller **Perkin Elmer thermopiles** Test in vacuum over Test in vacuum over varying temps varying temps Test on Elmo Test varying FOVs of a development board hot plate **Image from Elmo Test with Pittman Characterize sensor** ٠ ٠ motor connections data **Read telemetry** ۰ MicroE Encoder (disk + sensor) **RTD thermal sensors Clyde Space batteries** Test in thermal oven **Test functionality** Test internal • thermostatically and range in vacuum over varying temps controlled heaters **Characterize failure Characterize sensor** • modes and criteria data **Image from MicroE Characterize sensor** data Image from

Farnell

Integration & Test II

Scanner assembly

CAD image: E. Peters

- Test encoder + sensor functionality in vacuum
- Test CTE mismatches between bearing + shaft
- Test conductance and radiance to payload
- Test workmanship and alignment in vacuum over varying temperatures

Image from MicroE

Top interface board

Design image: R. Kingsbury

- Test connections in vacuum over varying temperatures
- Test with motor controller, gyroscope, and magnetometer
- Characterize data output

Bottom interface board

- Test connections in vacuum over varying temperatures
- Characterize data output

Design image: R. Kingsbury

Detailed Mass Mockup

ADCS Test Rig

- UHF/VHF Station
 - MIT Radio Society is assembling a "standard" UHF/VHF station
 - Two az-el steerable yagi antennas
 - Approximately 100W of
 - Undergoing final integration this spring
- S-Band Station
 - A much bigger project...

MIT Green Building Dish

- 5.5 meter (18 ft) dish
- Originally installed for weather radar research
- Pedestal is WW2 surplus SCR-584
- Modified in 1960s
 - Increased dish size
 - Added radome
 - Waveguide feed

Path forward

- Waiting to get manifest
 - Ready for early 2014
- Flight motor integration and test
- MAI-400 delivery, ADCS testing
 - Helmholtz cage, air bearing testing
- Additional radiation tests
- Software: linear algebra on PIC24
- Solar panel assembly delivery, integration
- Antenna fabrication, integration, tuning, characterization
- Ground station simulator, testing → MIT ground stations

RAX-2 and M-Cubed launch on Delta II 28 Oct 2011

Future: Constellation of Microwave Radiometers

Marinan, Nicholas and Cahoy, "Ad hoc CubeSat Constellations." IEEE Aerospace 2013

One satellite per plane

Case	Revisit Time (Avg, hrs)	Response Time (Avg, hrs)	Hours to 100% Coverage	
Walker	8	12	10	
Ad Hoc 1	12	23	22	
Ad Hoc 2	6	13	12	

Six satellites per plane

Case	Revisit Time (Avg, hrs)	Response Time (Avg, hrs)	Hours to 100% Coverage	
Walker	0.8	2	2	
Ad Hoc 1	1.0	16	15	
Ad Hoc 2	0.7	9	8	

Backup

Шiī_

Operational Overview

Illii

Subsystem Integration

Design Overview

CubeSat

Air Bearing/Helmholtz Cage

- Air bearing encased in Helmholtz coil
- Plan to add hot plates for EHS stimulus

Thermal Vacuum Chamber

- SSL Chamber
 - Plan to use as clean chamber for integrated system testing
- Kavli Small and Large Chambers
 - Component-level testing, bake-outs
- SSL 'Desktop' Chamber
 - Component-level testing, bake-outs

Electronics Laboratory

- Board-level testing and assembly
 - Pumpkin CubeSat development board

CubeSat

- ISO Class 8
- ESD mats and straps
- Integrated Thermal-Vacuum chamber (TBD)

Testing Facilities

Kavli Small Chamber

- Size: 8.25" I.D. x 15" L
- Pressure: < 1E-05 torr
- DAQ: Currently borrowing Agilent 34970A and PC from AA Gelb Lab

Status: READY

Kavli Large Chamber

- Size: 20" I.D. x 26" L
- Pressure: < 1E-05 torr
- DAQ: Integrated with Agilent 34970A and remote desktop PC

Status: READY

SSL Clean Chamber

- Size: 2' x 2' x 2'
- Pressure: < 1E-05 torr
- DAQ: TBD

Work Needed:

- Move into final location
- Supply with 220V power
- Replace O-ring, few parts
- Procure DAQ and PC

02/26 - 05/19/13

Finite Element Modeling

- Created finite element models of chassis, circuit board stack, and integrated assembly
- Lowest system mode: 189 Hz
 - Well above 70 Hz requirement

- UHF/VHF Station
 - MIT Radio Society is assembling a "standard" UHF/VHF station
 - Two az-el steerable yagi antennas
 - Approximately 100W of
 - Undergoing final integration this spring
- S-Band Station
 - A much bigger project...

MIT Green Building Dish

- 5.5 meter (18 ft) dish
- Originally installed for weather radar research
- Pedestal is WW2 surplus SCR-584
- Modified in 1960s
 - Increased dish size
 - Added radome
 - Waveguide feed

