

## Space Environmental NanoSat Experiment (SENSE)

Alejandro Levi Chief Engineer Developmental Planning Directorate USAF Space and Missile Systems Center





- SENSE Mission Overview
- Mission Organizations
- Space Vehicle Bus and Payloads
- Data Products and Users
- Timeline to Launch

### Space Environmental NanoSat Experiment (SENSE)

SENSE is a rapid-development <u>pathfinder</u> evaluating the <u>cost-effectiveness</u> and <u>resiliency</u> of CubeSat architectures for augmenting or performing operational missions. Additionally, SENSE is as a risk reduction and test bed for future SMC/IS WFOV efforts.







## SENSE Schedule

|                               | FY10 |    | FY10 FY11 |    | FY12  |     |       | FY13 |      |       | FY14 |     |        |           |     |         |       |        |
|-------------------------------|------|----|-----------|----|-------|-----|-------|------|------|-------|------|-----|--------|-----------|-----|---------|-------|--------|
|                               | Q3   | Q4 | Q1        | Q2 | Q3    | Q4  | Q1    | Q2   | Q3   | Q4    | Q1   | Q2  | Q3     | Q4        | Q1  | Q2      | Q3    | Q4     |
| <u>Key Milestones</u>         |      |    |           |    | Award | PDR | CDR   |      |      |       | PSR  |     | Delive |           |     | Complet | e End | of Msn |
| Space Segment (XR)            |      |    |           |    |       |     |       |      |      |       |      |     |        |           |     |         |       |        |
| RFP Development               |      |    |           |    | 1     |     |       |      |      |       |      | 1   | sv     |           |     |         |       |        |
| Source Selection              |      |    |           |    | ∎i –  |     |       |      |      |       |      | Sto | orage  |           |     |         |       |        |
| Sensor Development            |      |    |           |    | -     |     |       |      |      |       |      | (8  | mosj   |           |     |         |       |        |
| Bus Assembly & Test           |      |    |           |    | !     |     |       |      |      |       |      |     |        |           |     |         |       |        |
| Ground Segment (SDTW)         |      |    |           |    | I.    |     |       |      |      |       | Í    |     |        |           |     |         |       |        |
| Antenna Acquisition           |      |    |           |    | i     |     |       |      |      |       | i    |     |        |           |     |         |       |        |
| Develop Ground Infrastructure |      |    |           |    | -     |     |       |      |      |       | -    |     |        |           |     |         |       |        |
| IA Certification              |      |    |           |    |       |     |       |      |      |       | _ !  |     |        |           |     |         |       |        |
| Common Ground Architecture    |      |    |           |    | 1     |     |       |      |      |       | - I  |     |        |           |     |         |       |        |
| OPS Support                   |      |    |           |    | ÷     |     |       |      |      |       |      |     |        |           |     |         |       |        |
| Launch Segment (SDTW)         |      |    |           |    | ÷     |     |       |      |      |       |      |     |        |           |     |         |       |        |
|                               |      |    |           |    | :     |     |       |      |      |       | !    |     |        |           |     |         |       |        |
| Launch Integration            |      |    |           |    |       |     |       |      |      |       | -    |     |        | ' <b></b> | h i |         |       |        |
| Launon integration            |      |    |           |    | ÷     |     |       |      |      |       | i    |     |        |           | Υ   |         |       |        |
| Data Analysis (AFRL)          |      |    |           |    | :     |     |       |      |      |       |      |     |        |           |     |         |       |        |
| Tech Support HW/SW Prep       |      |    |           |    | !     |     |       | _    |      |       |      |     |        |           |     |         |       | _      |
| Data Analysis and Validation  |      |    |           |    | 1     |     |       |      |      |       |      |     |        |           |     |         |       |        |
|                               |      |    |           |    |       |     |       |      |      |       |      |     |        |           |     |         |       |        |
|                               |      |    |           |    |       | 19n | nos S | VAc  | quis | ition |      |     |        |           |     |         |       |        |

5

## Space Vehicle Bus



#### Highly Capable, Low Cost 3U Bus derived from NRO Colony II

- Three axis stabilized
  - 4 reaction wheels, 3 torque coils
  - 2 star cameras, sun sensors, magnetometers, and GPS
- Dosimeter included into Bus design
- 1 Mb/s downlink & 4 kb/s uplink S-Band transceiver w/ AES 256 Type II Encryption
- 37W peak power, 10W average power



## **Space Weather Sensors**







#### CTIP (SRI)

Measures 135.6 nm UV nightglow giving ionospheric density variation and structure

#### CTECS (x2)

Measures amplitude and phase variations of occulting GPS signals giving ionospheric density and scintillation

#### WINCS (NRL)

Measures ram fluxes of ions and neutral particles giving local electric field, densities, neutral winds, and temperature

#### **Microdosimeter**

Provide radiation dosage for measurement and correlate exposure with system performance

#### JROCM 091-12 Space Weather Gaps Demonstrated in Form Factor

Cat A #4 Ionospheric Density

Cat A #4 Ionospheric Density Cat A #7 Ionospheric Scintillation (no troposphere) Cat B #19 Trapped Electrons

Cat A #11 LEO Energetic Charged Particle Characterization Cat B #22 Neutral Density Cat B #44 Neutral Temperature Cat A #11 LEO Energetic Charged Particle Characterization (partial)

\*While not hosting a payload SENSE makes a strong case for Cat A #12 Electric Field in NanoSat form factor

## SENSE Data Flow







PORCE SPA

#### SENSE entering T-VAC



CGA End-to-End test





#### Antenna Testing





SV Delivery at Kirtland, AFB

Minotaur 1 launch from Wallops, VA







- 1. SENSE is SMC's premier rapid development effort which will demonstrate the capability of CubeSats to perform space missions in an affordable and resilient manner.
  - Acquired under SMC acquisition strategy for all space vehicles
- 2. The first AF CubeSat mission with the potential to become operational.
  - Delivers three first generation miniature sensors; WINCS, CTIP, CTECS.
  - Meets 2 of 12 Space Weather Gaps
- 3. A distributed ground architecture with leave-behind capability to fly the next minimally-manned satellite mission.









CTECS

WINCS





- 1Lt George Sondecker, SENSE Developmental Engineer
  - Office: (310) 653-9991
  - Email: george.sondecker.1@us.af.mil
- Mr. Alejandro Levi, SMC/XR Chief Engineer
  - Office: (310) 653-9344
  - Email: alejandro.levi.1@us.af.mil





## **SUPPLEMENTARY SLIDES**



## **CubeSats & P-PODs Defined**

- Cal Poly CubeSat Design Specification developed by academia nearly 1 decade ago to enable access to space for low-budget space experiments
  - 1U CubeSat standardized as a 10cm cube of 1.3kg mass
  - 3U CubeSat extends length to 34 cm and 4.0 kg mass
- Poly-Picosatellite Orbital Deployer (P-POD) encapsulates the CubeSat(s) during launch and deploys the CubeSat(s) on orbit
- A key SENSE objective is to evaluate the 3U form factor's potential as a viable option for future operational mission architectures



**CubeSat Integration into P-POD** 





## **On-Orbit Operations**

- SENSE Operations will be conducted from the RSC at Kirtland AFB
  - SENSE operations team consists of fourteen 62/63-coded Lieutenants from SMC/SD, SMC/XR, and SMC/IS
    - Senior oversight provided by DO for SMC/SDTO, Lt Col Michael Todd
    - Lt Col Todd is a 13S satellite operator with 15yrs rated experience
    - Additional operational support available from LinQuest and 13S operators assigned to SMC/SD
  - All SENSE operators will complete a 10 lesson training course and will participate in a 1wk mission exercise and a 1wk mission rehearsal
    - All operators must complete the SENSE Master Task List (MTL):
      - A 152-item training checklist requiring students to demonstrate proficiency in all aspects of SENSE satellite operations
      - MTL has been approved by Lt Col Todd at SMC/SD
  - SENSE operational procedures, to include procedures for off-nominal and emergency situations, are modeled after TacSat-3 and must be reviewed and approved by SMC/SDTO leadership



## **Command and Data Handling**

| ritage |                   |
|--------|-------------------|
|        |                   |
| TB1,   |                   |
| IB3,   |                   |
|        |                   |
|        |                   |
|        |                   |
|        |                   |
|        | ГВ1,<br>ГВ3,<br>} |

|                          | SV Config A<br>(CTIP, CTECS, | SV Config B<br>(WINCS, CTECS, |
|--------------------------|------------------------------|-------------------------------|
| TLM Item Storage         | Dosimeter)                   | Dosimeter)                    |
| WINCS                    | 176.3                        |                               |
| CTIP                     |                              | 6.4                           |
| CTECS                    | 340.5                        | 340.5                         |
| Dosimeter                | 0.3                          | 0.3                           |
| Bus                      | 89.8                         | 89.8                          |
| Total Storage Rate       | 606.6 kB/min                 | 436.7 kB/min                  |
| Total Data 2 Days        | 1747 MB                      | 1258                          |
| Total Storage Capability | 2000 MB                      | 2000 MB                       |
| Data Storage Margin      | 14%                          | 59%                           |
| CTECS GPS Data based of  | n 50hz RO sampling           | in eclipse, 1hz PVT           |

#### **Features**

- Ferroelectric RAM (FRAM) used to system state and mission critical data
  - Approximately 1.5MB in redundant banks of 768MB each
  - Scheduler sequences are stored on non-volatile FRAM written redundantly with triple voting
- High density bulk storage uses industrial grade micro-SD type memory used in redundant configuration
  - Two 2GB industrial grade cards



Power

(PMAD Board)

#### **Electrical & Data Interfaces**

- 9V-12.6V DC power
- RS-422
- FTSH-110-01-L-DV-K
- Our approach would be to distribute the crypto, TX, RX across the available pins to minimize copper losses
- Assessing 2 UART interfaces with Flow control from Transceiver
  - Command & Data paths
  - Requires new I/F board on SC side or design change to Transceiver



## **SV Mass Summaries**

## Final Total Measured:

- SV-1 (CTIP): 3.402 kg
- SV-2 (WINCS): 3.524 kg

| CTIP + GPS CTECS Co                             | nfiguration       |        |                    |
|-------------------------------------------------|-------------------|--------|--------------------|
| Subsystem                                       | Mass w/<br>Margin | Margin | Mass w/o<br>margin |
| Command and Data Handling                       | 70                | 3.0%   | 68                 |
| Attitude Determination, Control, and Navigation | 620               | 3.0%   | 602                |
| Telemetry, Tracking, and Command                | 579               | 4.5%   | 554                |
| Electrical Power System                         | 1026              | 3.9%   | 987                |
| Structures and Mechanical                       | 246               | 3.0%   | 239                |
| Thermal Control                                 | 335               | 10.1%  | 305                |
| Harness/Cabling                                 | 64                | 7.2%   | 60                 |
| Spacecraft BUS TOTAL                            | 2939              | 4.5%   | 2814               |
| Payload                                         | 600               | 16.5%  | 515                |
| SV TOTAL                                        | 3540              | 6.3%   | 3329               |
| Launch Margin                                   | 460               | 11.5%  |                    |
| SV Margin including uncertainty                 | 4000              | 16.8%  | 3329               |

| WINCS + GPS CTECS C                             | onfiguratio       | n      |                    |
|-------------------------------------------------|-------------------|--------|--------------------|
| Subsystem                                       | Mass w/<br>Margin | Margin | Mass w/o<br>margin |
| Command and Data Handling                       | 70                | 3.0%   | 68                 |
| Attitude Determination, Control, and Navigation | 620               | 3.0%   | 602                |
| Telemetry, Tracking, and Command                | 579               | 4.5%   | 554                |
| Electrical Power System                         | 1026              | 3.9%   | 987                |
| Structures and Mechanical                       | 246               | 3.0%   | 239                |
| Thermal Control                                 | 335               | 10.1%  | 305                |
| Harness/Cabling                                 | 64                | 7.2%   | 60                 |
| Spacecraft BUS TOTAL                            | 2939              | 4.5%   | 2814               |
| Payload                                         | 713               | 3.2%   | 691                |
| SV TOTAL                                        | 3653              | 4.2%   | 3505               |
| Launch Margin                                   | 347               | 8.7%   |                    |
| SV Margin including uncertainty                 | 4000              | 12.4%  | 3505               |





**Positive Energy Balance** 



•SV has the ability to transmit 15 min/orbit

TR FORCE SPAC

•Enables latency requirements satisfaction for SEM mission



## **CTECS-** Radio Occultation Sensor



Primary data product: line-of-sight TEC to all GPS satellites in view for ingest into ionospheric models

Secondary data product: L-band scintillation observations

- Antenna is dual patch
  - 1557 MHz and 1227 MHz
  - A Low-Noise-Amplifier (LNA) is placed between antenna and receiver
- L1, L2, L2c signal tracking capability

Measures:

- 1. Delay of signal between SENSE and the GPS transmitter to extract Total Electron Count in the atmosphere
- 2. Atmospheric Scintillation





NovAtel OEMV-2 receiver

GPS #2 Panel





- 14 channel receiver (track 14 GPS satellites L1/L2 simultaneously)
- Allows user-specified software
- Provides position and timing information.
- Simplified structural analysis planned to determined frequency and mode behavior of COTS board.

| Parameter                      | Value                                  |
|--------------------------------|----------------------------------------|
| Size                           | 60 mm x 100 mm x 11.4 mm + connectors  |
| Mass                           | 56 g                                   |
| Voltage                        | +3.3 VDC (+5%/-3%)                     |
| Allowable Input Voltage Ripple | 100 mV p-p (max.)                      |
| In-rush Current                | 22 A for 30 µs                         |
| Power                          | 1.2 W                                  |
| Data Rate                      | Approx 240-280 kbps during occultation |



## Aerospace Corporation Custom Antenna

CTECS Antenna on 3 unit CubeSat: 1227 MHz, dB(RealizedGainRHCP) versus Phi and Theta (07/29/11)

- Design based on PSSC-2 CTECS antenna with minor modifications
  - 1U side placement on s/c
  - LNA circuit surface mounted to back of antenna





CAD model of the CTECS antenna viewed from the top.



**Objective:** Gather data to characterize the ionosphere through the natural decay rate as seen in recombination of O<sup>+</sup> ions and electrons

Ionospheric Photometer (CTIP)

- Atomic Oxygen ions constitute the primary ionospheric species in the F-region
- In the night-time F-region ionosphere
  - 135.6 nm photons are emitted spontaneously
  - from the recombination of atomic oxygen ions
  - −  $O^+ + e^- \rightarrow O (5P) + hv_{135.6}$



**Compact Tiny** 

 O<sup>+</sup> and e- are in equal number and 135.6 nm emission is proportional to the path integral of [O<sup>+</sup>] squared

Measures:

1. Ultraviolet Airglow at 135.6 nm









**CTIP optics based on heritage COSMIC TIP design** 

# With the second se

## Winds lons Neutrals Composition Suite (WINCS)

**Objective:** Acquire simultaneous co-located, in-situ measurements of atmospheric density, composition, temperature and winds.





## WINCS Theory of Operation

- WTS/IDTS: Ionize incident air stream to measure the angular distribution at many angles simultaneously while scanning energy in time
- IMS/NMS: Time of Flight mass spectroscopy
- Calibration: via extended ion source on the ground (rotate source/sensor to simulate winds)







## WINCS Requirements vs. Performance

| Parameter             | Units     | Requirement          | Designed Performance |
|-----------------------|-----------|----------------------|----------------------|
| Mass                  | kg        | < 1                  | 0.745                |
| Average Power         | Watt      | < 2.25               | 2.165                |
| Nominal Data Rate     | kbps      | < 25                 | 22.672               |
| Data Storage          | Gbytes    | N/A                  | 2                    |
| Field of View         | Degrees   | 45                   | 45 (± 22.5)          |
| Humidity*             | %         | 0 - 90               | 30 - 80              |
| Operating Temperature | Degrees C | -20 to 50            | -20 to 50            |
| Survival Temperature  | Degrees C | -34 to 71            | -34 to 71            |
| Pointing Knowledge    | Degrees   | <0.1 (<0.03 desired) | <0.1 (<0.03 desired) |





## **Teledyne Micro-Dosimeter**

**Objective:** Provide radiation dosage for measurement and to correlate system performance with exposure

- First compact microcircuit that provides a repeatable measurement of radiation dose and dose rate over a wide range of energies
- Enables routine monitoring of spacecraft radiation environment
- Custom microchip in a small footprint package for low weight and power
- Correlates environmental models and raytracing analyses with real in-flight measurements



#### Teledyne Microdosimeter



- 14 uRad Dose resolution
- Survivability to 40 kRad
- Class K space qualified
- Mechanical dimensions: 3.6 cm x 2.5 cm x 0.1 cm
- 20 grams
- 10 mA , 13 Vdc to 40 Vdc
- 3 DC linear outputs
- 1 Pseudo Log
- 100 kRad total count
- Test Input bypasses silicon detector for circuitry detection
- Volatile count retention
- Updates every 30 seconds



## Mission Data Products (TPMs)

|                              |                                     |                                |                                 |                              | SENSE = GPS RO +              | + WINCS + CTIP   |                                         |  |
|------------------------------|-------------------------------------|--------------------------------|---------------------------------|------------------------------|-------------------------------|------------------|-----------------------------------------|--|
| Environmental Data           |                                     | Requir                         | rements                         | Current Value at DR          |                               |                  |                                         |  |
| Record (EDR)                 | Parameter                           | Threshold                      | Objective                       | CTECS                        | WINCS                         | CTIP             | SENSE                                   |  |
| Electron density profile     | Horizontal cell size                | 50 km                          | 10 km                           | Variable                     | 8 km                          | 15 km            | 8 km                                    |  |
| Electron density profile     | Vert Cell Size                      | 10 km                          | 3 km                            | 6 km                         | N/A                           | 10 km            | 2 km                                    |  |
| Electron density profile     | Vert coverage                       | 90 km to Sat Alt               | 90 km to 1600 km                | 90 km to Sat Alt             | N/A                           | 90 km to Sat Alt | 90 km to Sat Alt                        |  |
| Electron density profile     | Range Ne                            | 2.5E4 to 1E7 e/cm <sup>3</sup> | 1E4 to 1E7 e/cm <sup>3</sup>    | 2E4 to 1E7 e/cm <sup>3</sup> | 1E3 – 1E7/cm <sup>3</sup>     | 2E4 to 1.4E8     | 1E4 to 1E7 e/cm <sup>3</sup>            |  |
| Electron density profile     | Range VTEC                          | 3 to 200 TECU                  | 1 to 200 TECU                   | 3 to 200 TECU                | N/A                           | 3 to 19000 TECU  | 1 to 19000 TECU                         |  |
|                              |                                     | Greater of 1E5                 | Greater of 1E4 /cm <sup>3</sup> |                              |                               |                  |                                         |  |
| Electron density profile     | Sigma Ne                            | /cm <sup>3</sup> or 30%        | or 5%                           | Variable <sup>1</sup>        | 10%                           | ± 9%             | < 20%                                   |  |
|                              |                                     | Greater of 3 TECU              | Greater of 1 TECU               | Greater of 3 TECU            |                               |                  | Greater of 1 TECU                       |  |
| Electron density profile     | Sigma TEC                           | or 30%                         | or 30%                          | or 35%                       | N/A                           | 3 TECU           | or 20%                                  |  |
| Electron density profile     | Sigma H <sub>m</sub> F <sub>2</sub> | 20 km                          | 5 km                            | 20 km                        | N/A                           | N/A              | 10 km                                   |  |
| Electron density profile     | Sigma $N_m F_2$                     | 20%                            | 10%                             | 30%                          | N/A                           | N/A              | 15%                                     |  |
| Electron density profile     | Sigma N <sub>m</sub> E              | 20%                            | 5%                              | 100%                         | N/A                           | N/A              | 20%                                     |  |
| Electron density profile     | Latency                             | 90 minutes                     | 15 mintues                      | 15 mintues                   | N/A                           | 15 minutes       | 15 mintues                              |  |
| Scintillation                | Horizontal Cell Size                | 100 km                         | 25 km                           | 500-2000 km                  | N/A                           | N/A              | 15 km                                   |  |
| Scintillation                | Amp. index (S4)                     | 0.1 to 0.5                     | 0.1 to 1.5                      | 0.1 to 1.5                   | N/A                           | N/A              | 0.1 to 1.5                              |  |
| Scintillation                | Phase Index $(\sigma_{\phi})$       | 0.1 to 20 rad                  | 0.1 to 20 rad                   | 0.1 to 20 rad                | N/A                           | N/A              | 0.1 to 20 rad                           |  |
| Scintillation                | Uncertainty S4                      | 0.1                            | 0.1                             | 0.1                          | N/A                           | N/A              | 0.1                                     |  |
| Scintillation                | Uncertainty $\sigma_{\phi}$         | 0.1 rad                        | 0.1 rad                         | 0.1 rad                      | N/A                           | N/A              | 0.1 rad                                 |  |
| Scintillation                | Latency                             | 90 minutes                     | 15 mintues                      | 15 mintues                   | N/A                           | N/A              | 15 mintues                              |  |
| lons                         | lon species                         | none                           | $O_2^+, NO^+, O^+, H^+, He^+$   | N/A                          | $O_2^+, NO^+, O^+, H^+, He^+$ | N/A              | $O_2^{+}, NO^{+}, O^{+}, H^{+}, He^{+}$ |  |
|                              | Composition                         |                                |                                 |                              |                               |                  |                                         |  |
| lons                         | discrimination                      | none                           | 5% of Ne                        | N/A                          | 5 % of Ne                     | N/A              | 5% of Ne                                |  |
| lons                         | Drift velocity                      | none                           | Objective                       | N/A                          | +/- 2000 m/s                  | N/A              | +/- 2000 m/s                            |  |
| lons                         | Density                             | none                           | Objective                       | N/A                          | 1E3 – 1E7/cm <sup>3</sup>     | N/A              | 1E3 – 1E7/cm <sup>3</sup>               |  |
| lons                         | Density fluctuations                | none                           | Objective                       | N/A                          | 1E3 – 1E7/cm <sup>3</sup>     | N/A              | 1E3 – 1E7/cm <sup>3</sup>               |  |
| lons                         | Energy                              | none                           | Objective                       | N/A                          | 0 to 20 ev                    | N/A              | 0 to 20 ev                              |  |
| lons                         | Temperature                         | none                           | Objective                       | N/A                          | 1000 K to 4000 K              | N/A              | 1000 K to 4000 K                        |  |
| Electric Field               | Electric field                      | none                           | Objective                       | N/A                          | 0 to 150 mV/m                 | N/A              | 0 to 150 mV/m                           |  |
| Neutrals                     | Wind speed                          | none                           | Objective                       | N/A                          | +/- 2000 m/s                  | N/A              | +/- 2000 m/s                            |  |
| Neutrals                     | Density                             | none                           | Objective                       | N/A                          | 1E3 to 1E10 /cm <sup>3</sup>  | N/A              | 1E3 to 1E10 /cm <sup>3</sup>            |  |
| Neutrals                     | Temperature                         | none                           | Objective                       | N/A                          | 1000 K to 4000 K              | N/A              | 1000 K to 4000 K                        |  |
| 1. 100% Elayer, 50% Flayer b | oottom side, 30% F layer n          | ear peak, 15% topside          |                                 |                              |                               |                  | 29                                      |  |



G Y R

N/A

## SEM Matrix

| Space                                    | e Environm                      | ent Measure                          | ment Matrix                                        |                                 | ĭ                         |            |  |
|------------------------------------------|---------------------------------|--------------------------------------|----------------------------------------------------|---------------------------------|---------------------------|------------|--|
| Measurement                              | DMSP<br>Polar Orbit<br>Fixed LT | C/NOFS<br>Equatorial<br>Orbit All LT | SENSE<br>Instruments<br>All LT                     | SENSE +<br>Ground<br>Processing | DMSP,<br>C/NOFS,<br>SENSE |            |  |
| Auroral Particles                        | G                               | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| Auroral Energy Deposition                | G                               | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| Auroral Imagery                          | G                               | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| Auroral Boundary                         | G                               | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| Energetic lons                           | Y-L                             | N/A                                  | N/A                                                | N/A                             | Y                         |            |  |
| Medium Energy Particles                  | G                               | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| High-Lat lonospheric Scintillation       | Y - A                           | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| Low-Lat lonospheric Scintillation        | Y - OA                          | G                                    | Y-0                                                | G                               | G                         |            |  |
| High-Lat In Situ Electric Field          | G                               | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| Low-Lat In Situ Electric Field           | Y - O                           | G                                    | Y-OT                                               | G                               | G                         |            |  |
| High-Lat Electron Density Profile        | Y - A                           | N/A                                  | N/A                                                | N/A                             | Y                         |            |  |
| Mid-Lat Electron Density Profile         | Y - OA                          | N/A                                  | G                                                  | G                               | G                         |            |  |
| Low-Lat Electron Density Profile         | Y - OA                          | G                                    | Y-0                                                | G                               | G                         |            |  |
| Neutral Density Profile                  | R                               | Y - AT                               | Y - AT                                             | G                               | G                         |            |  |
| In Situ Neutral Winds                    | R                               | Y - AT                               | Y - AT                                             | Y                               | Y                         |            |  |
| High-Lat Geomagnetic Field               | G                               | N/A                                  | N/A                                                | N/A                             | G                         |            |  |
| Low-Lat Geomagnetic Field                | Y - O                           | G                                    | R                                                  | R                               | G                         |            |  |
| In Situ Plasma Temperature               | G                               | G                                    | Y - T                                              | Y                               | G                         |            |  |
| In Situ Plasma Fluctuations              | G                               | G                                    | R                                                  | R                               | G                         |            |  |
| od measure of parameter                  |                                 | O Sub-opt                            | imal orbital incli                                 | ination                         |                           |            |  |
| asurement made, but with limitation(s)   |                                 | A Orbit alt                          | itude                                              |                                 |                           |            |  |
| measurements made to address this parame | ter                             | T Technol                            | ogy – instrumer                                    | nt has limited or u             | nproven capability f      | or this pa |  |
| es not apply in specified orbit          |                                 | L Instrum                            | Instrument covers a limited range of the parameter |                                 |                           |            |  |



## **Reliability Modeling (CTIP)**

- CTIP vehicle reliability is estimated to be 0.7312 at 1 year.
  - 5 Bus Drivers are:
    - USB Radio (0.950)
    - IRB (0.954)
    - PMAD (0.969)
    - RWA controller (0.975)
    - +Y Body panel (0.980)
  - Payload Driver
    - CTIP (0.960)





## **Reliability Modeling (WINCS)**

- WINCS vehicle reliability is estimated to be 0.7304 at 1 year.
  - 5 Bus Drivers are:
    - USB Radio (0.950)
    - IRB (0.954)
    - PMAD (0.969)
    - RWA controller (0.975)
    - +Y Body panel (0.980)
  - Payload Driver
    - WINCS (0.954)

