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CubeSat Deformable Mirror Demonstration 2 

Is there other life out there? 

earthobservatory.nasa.gov 



C D M D  Reflected starlight: spectra 

• Look at absorption features in spectra: O2, H2O 
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 ESO/L. Calçada 



CubeSat Deformable Mirror Demonstration 4 

But stars are really bright… 

http://photojournal.jpl.nasa.gov/catalog/PIA04204 



C D M D  Hmm… 

• Must block starlight to see planets around star 
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C D M D  Coronagraph 

• Use a coronagraph to block the star’s light 
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C D M D  
Basic Coronagraph Optics  

• If life were perfect… 
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Figure adapted from Traub & Oppenheimer 2010 



 

CubeSat Deformable Mirror Demonstration 8 

The star 55 Cancri observed with the Lyot 
Project coronagraph at AEOS in Maui. 
The symmetric "speckles" arising from 
atmospheric effects and imperfections in 
the telescope optics are clear.  
http://www.lyot.org/results 

But life is not perfect:  
speckles 



C D M D  Corrupting an innocent 
wavefront • Cosine ripple  symmetric speckles 
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C D M D  2D Speckles 

• 2D FFT of X, Y ripple pattern (e.g. surface error, stray light) 
• Lower spatial frequencies at center, higher outside 

– Outside is where planets will be, need dark hole  Deformable Mirror  
• N actuators per side of a DM, null N/2 waves, θ(dark hole) = ± Nλ / 2D  
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Need deformable mirror with lots of actuators… in space. 
The first time to try this is not on a $1B space telescope. 



C D M D  Single deformable mirror 
example 
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Light source 
Single mode fiber-coupled laser 
650 nm 

Collimating 
lens 

PIAA  
L1 and L2 Focusing  

lens 
DM 

Focal plane occulter 

Lens 

R. Belikov (NASA Ames), results with 
polarizer, 6/9/09 (in 2011, 5.4 x 10-8)  
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C D M D  MEMS Deformable Mirrors 

• Actuators change the shape of the 
mirror surface to match the incoming 
wavefront 
 

• MEMS devices 
–Electrostatic actuators 
–Stroke of ≈ 1—8 µm 
–Higher voltage, low current 
–More actuators 
–Fast response time 
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Stewart et al. 2007 

 



C D M D  
Wavefront Control System 

13 Initial PSF PSF with turbulence 
(D/r0 = 2) Corrected PSF 



C D M D  
Wavefront Control Sensors 

• Measure wavefront and calculate 
phase error to be corrected 
 

• Sensored 
–Optical element introduced into 

beam to generate measurement 
 

• Sensorless 
–Intensity-based measurements, 

computationally intensive 
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C D M D  Lab prototype 
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CubeSat-scale setup Z(2,-2), 2xy Shack Hartmann Spots 

MATLAB simulation and controller 



C D M D  
CubeSat Deformable Mirror 

Demonstration 
• On-orbit performance of MEMS DM  
•  DMs will fit  

–Same actuator technology as big ones 
•BMC Mini MEMS DM, 32 actuators 
•Iris AO PTT111, 37 segment 
•Drive electronics board will also fit 

• Laser Diode 
–“Easy” ADCS  
–Aperture can look at stars when laser off 

•But don’t really care which star(s) 
•Need only to have slew rate ~ 5 arcmin/s 
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BMC MEMS DM 



C D M D  1.5 U Payload,  
1.5 U Bus subystems 

• Leveraging experience with MicroMAS, simpler ADCS 
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C D M D  Payload Overview 

• Boston Micromachines Mini MEMS DM 
– 32 actuators, 5 cm diameter, 2.21 cm tall 
– ~150 g including cables 
–Driver board 

• Existing board nearly CubeSat form factor 
• Straightforward to respin 

• Optics 
–DM has >= 1.5 mm aperture 
–UV-grade fused silica 

• Lenses, beamsplitter, ND filters, lenslet array, 
quarter wave plate 

• Stress-free mounts, lens tubes 
 

• Detector 
– IDS UI-5241LE-M, CMOS (or similar) 
–Closed loop wavefront control; processor 
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C D M D  Shack-Hartmann  
Wavefront Sensing System 

19 

1. Aperture Lens 
2. Collimating Lens 
3. Polarizing Lens 
4. Polarizing Lens 
5. Flat Mirror 
6. Beamsplitters 
7. Quarter 

Waveplate 



C D M D  

20 

1. Aperture Lens 
2. Collimating Lens 
3. Polarizing Lens 
4. Polarizing Lens 
5. Flat Mirror 
6. Beamsplitters 
7. Quarter 

Waveplate 

Shack-Hartmann  
Wavefront Sensing System 



C D M D  Shack-Hartmann  
Wavefront Sensing System 
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1. Aperture Lens 
2. Collimating Lens 
3. Polarizing Lens 
4. Polarizing Lens 
5. Flat Mirror 
6. Beamsplitters 
7. Quarter 

Waveplate 



C D M D  Shack-Hartmann Lenslet Array 
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• Incoming beam dictated by DM aperture 
• Maximize sub-lenses / mm^2 
• If lens is 10 mm x 10 mm, with 150 μm pitch = ~67 x 67 spots.   

So, for an incoming beam diameter of 2.25, about 15 x 15 spots. 
• Need at least 4 pixels per spot, so for detector,  

need the 2.25mm beam to cover more than 60 x 60 pixels. 
 



C D M D  Beam Divergence 
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Assumptions: 
1. Beam is circular 
2. No additional 

beam divergence 
through optical 
components 



C D M D  

24 

Avionics 

• Avionics Requirements 
–Camera interface / readout 
–Low frame rate image processing 

• Centroid, delta x and delta y, slope 
reconstruction 

• Linear algebra for mirror controller 
 

• Possible solutions 
–PC104 form factor single board computer  
–Raspberry Pi 

• Also low-speed camera option 
• 5 MO OmniVision 5467 (60 fps at 720p) 

–ODroid-X2 
• ARM, standard peripherals 

Hardkernel.com 

Raspberry Pi, Wikipedia 



C D M D  Path forward 

• Laboratory development 
–Optical tolerancing, payload trades (Zemax) 
–Wavefront sensing, quantify DM reconstruction capability 

•Accuracy as function of # lenslets, alignment, tolerancing 
•Optimize wavefront reconstruction data products 

–Centroids, delta x, delta y, Zernike or Fourier coefficients 
–Update mirror drive electronics 
–Avionics design and testing 

 
• Environmental tests on mirrors, drivers (ref. Shea et al. 2006) 

–Mechanical, electrical, follow up with ground efforts 
 

• Partners, sponsors, launch opportunities, logistics 
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C D M D  Conclusion 
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Design and build cost-effective, small  
wavefront control CubeSat to characterize  

high actuator-count MEMS deformable mirrors. 
 

Enable implementation of active/adaptive optics 
with MEMS DMs on future space missions. 

 
High contrast imaging.  

Precision pointing.  
Modulation. 



C D M D  

Thank you! 

27 
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C D M D  

Backup Slides 
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C D M D  Michelson Interferometer with 
Flat Mirror on NanoPositioner 

30 

 



C D M D  Payload Requirements 

ID Statement  Relevant parts 

PLD-1 The payload shall command a MEMS deformable mirror to run a 
pre-defined test sequence for at least 5 minutes [TBR] each orbit.  

All  

PLD-1.1 The payload shall have the ability to control any combination of 
actuators within 0.001 [TBR] seconds of each other, at a 
minimum rate of 100 Hz [TBR], with a minimum stroke of 1.5 
microns, and with a precision of at least 1 nm [TBR]. 

Deformable 
Mirror 

PLD-2 The payload shall have the ability to measure and reconstruct the 
optical wavefront at one wavelength for the duration of a 5 
minute [TBR] test sequence each orbit. 

Avionics Interface 

PLD-2.1 The payload shall have the ability to measure the optical 
wavefront at a minimum rate of 100 Hz [TBR] 

Detector, Avionics 

PLD-2.2 The payload shall have the ability to reconstruct the optical 
wavefront with a minimum accuracy of 100 nm rms [TBR]. 

SH array, Detector 
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C D M D  Example: Find beam diameter 
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For the CPS186 laser: 
• Θ ≤ 1.8 mrad 
• Di = 1.2309 mm 

Beam leaves laser with divergence Θ, and 
effective diameter Di, and travels to 
polarizer, a distance L away.  What is the 
beam diameter Df entering the polarizer? 

At the detector: 
Df ≈ 1.5859 mm 



C D M D  Absorption, Reflectivity, and 
Polarization 
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Assumptions: 
1. Beam is circular 
2. No 

power/intensity 
lost between 
components 
(small distances) 



C D M D  Example: Find beam intensity 
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Beam leaves laser with power P, and 
effective diameter Di, and travels to 
polarizer.  What is the beam intensity 
after going through the polarizer? 

For the CPS186 laser: 
• P = 4.70 mW 
• Di = 1.2309 mm 

At the detector:  
If ≈ 1.2411 mW/mm2  
P ≈ 2.4514 mW 



C D M D  ADCS 
Analysis & Design 

Actuator:  
 
3- orthogonal torque coils 

–  Light weight, low power actuator  
– Provide actuation for active magnetic control  

 
Sensors 
 
• Magnetometer 

–  Provide reading of local magnetic field for magnetic control 
–  Provide attitude knowledge in eclipse 
 

• Sun Sensors 
– Provide attitude knowledge in daytime 
 

• IMU 
–  Provide angular rate knowledge for vibration damping 

35 T. Nguyen 



C D M D  ADCS 
Torque Coil Design 

Direction Z X, Y 
Size 10 cm × 10 cm  10 cm x 30 cm 
Quantity 1 2 
Turns 500 400 
Current 0.12 A 0.04 A 
Wire Gauge 28 AWG 28 AWG 
Magnetic moment 0.60 A*m^2 0.60 A*m^2 

T. Nguyen 
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Total Mass 520 g 
Max Total Power 1.35 W 
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