

The CzechTechSat – A Space-friendly CubeSat-class Picosatellite

10th Annual CubeSat Developers' Workshop, Cal Poly, Apr 24th 2013, San Luis Obispo, CA, USA

Zuzana Fickova²; Tomas Hort²; Lukas Houstecky¹^a; Martin Hromcik¹^c, Ph.D.; Ondrej Jakubov¹^b; Michal Janosek¹^a; Assoc. prof. Pavel Kovar¹^c; **Jaroslav Laifr¹**^{a,3}, Jan Papaj¹^a; Vojtech Petrucha¹^a; Vit Placek⁴; Matej Straka¹^c; Antonin Stepan¹^a; Pavel M. Travnicek⁵

laifrjar@fel.cvut.cz

(1) Czech Technical University in Prague, Faculty of Electrical Engineering, ^(a) Dept. of Measurement, CTU SPACE LAB, MAGLAB, ^(b) Dept. of Radielectronics, ^(c) Dept. of Control Engineering, Technicka 2, Prague, Czech Republic, EU
 (2) Czech Technical University in Prague, Faculty of Mechanical Engineering, Dept. of Engineering Technology, Technicka 4, Prague, Czech Republic, EU,
 (3) Astronomical Institute of Czech Academy of Sciences, Solar Department, Space Plasma Group., Bocni II 1401/1a, Prague, Czech Republic, EU,
 (4) Nuclear Research Institute Rez, Plc., Dept. of Radiation Chemistry, Husinec, Hlavni 130, Rez, Czech Republic, EU,
 (5) University of California, Berkeley, Space Sciences Laboratory, 7 Gauss Way, CA, USA

CzechTechSat Objectives & Design Drivers

- build a "space-friendly" platform in terms of rad.
- prove radiation tolerance concepts in real environment
- learn the space engineering
- to give students the 'Space' hands-on opportunity
- to proof Low-noise Fluxgate Magnetometer
- to proof Langmuir Probe instrument concept
- to build and fly 'the first Czech' CubeSat

Semiconductors vs. Reliability

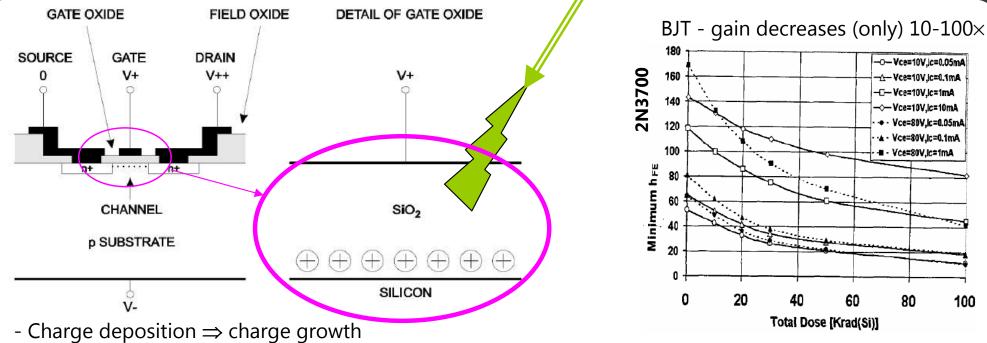
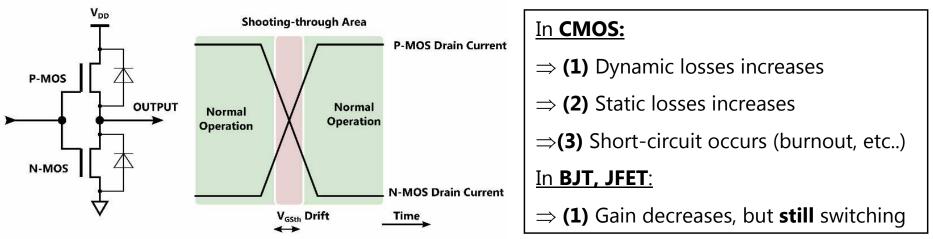



Image Credits: http://www-physics.Ibl.gov/~spieler/radiation_effects/rad_tutor.pdf

- Charge in insulator \Rightarrow channel becomes opened, V_{TH} decreases
- Charge cannot be removed (only a little bit by the tunnelling, leakage, long term annealing...)

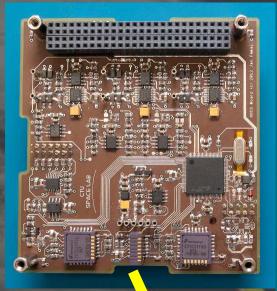
Radiation Effects in JFETs – EPS Switch Candidate

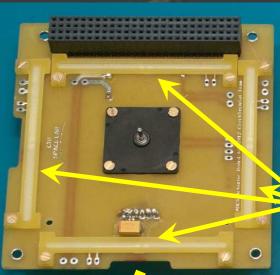
- **JFET** without insulated gate to deposit parasitic charge Shockley's model **D-TYPE GATE** of the JFET OHMIC DRAIN CONTACT n-TYPE OHMIC SOURCE DEPLETION REGION **D-TYPE GATE**
- Highly doped channel ($10^{15} 10^{18} \text{ n/cm}^3$) \Rightarrow Sensitive to overdopping at very high doses

- Black, M. N. 2011: *High Energy Gamma Radiation Effects on Commercially Available SiliconCarbide Power JFET Transistors – Semisouth SiC JFET – survived* **7 MRad**!

- New TT-Electronics Semelab SiC JFET for Aerospace
- Non-ITAR product
- Type SML100M12MSF, cheap (200 Eur/pc.)
- Normally-Off JFET
- Very High Power switching capability 1200V/17A = Margin

- R_{DSon} = 100 m Ω @ 17 A, C_{g} = 650 pF \Longrightarrow Low Switching Losses


- Driving voltage 0 Volt (1 mA leakage) to 3 Volt (fully opened channel)
- Wide bandgap (2,9 eV) can operate at high temperatures (SiC chip up to 500°C), bulky package (TO-257AA)
- New product = not Space Qualified, no Rad Data available


com/2011/11/1950s-shockley-model-of-jfet.j

Attitude Determination and Control Subsystem

FEATURES:

- 1× AMR Magnetometer
- 3× MEMS Gyros 100°/s (5000g shock survival)
- $3 \times MTQ$ (2× Vitrovac Cores, 1× Air Coil)
- MTQ Driver with Electromagnetic 'Brake' Mode
- MTQ Temp and Current Measurement
- 1× Reaction Wheel, Vacuum-Proof **BLDC** Motor
- 6× Photodiode Sun Sensors inputs
- HK Measurements
- Doubled Data Bus
- Smart Power Management
- IGRF-2010 model
- Kalman Filtering
- Compact Set

ADCS - Center-of-Gravity (CoG) Digitally Determined

MTQ Holders with groove for high permeability magnetic core

FEATURES:

- 2×435 MHz Band TRX
- TI's CC1000-based
- Up to 76800 Bps
- HK measurements
- Sensitivity -110 dBm @ 2400 bps w/o LNA

RELIABILITY IMPROVEMENTS:

- Backup DTMF for Uplink Planned, AX.25 TNC + FEC

Mass: 54 g

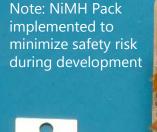
- Beacon Mode (TX+PA)
- VHF Uplink planned (RX+LNA)
- Wide Voltage Input of Control MCU (2.0 5,5V)
- Power Switch + Fuses
- Doubled Comm Bus TRXes based on Derivators

Deployable UHF/VHF RHCP/LHCP antennas, JFET-based LNA under development

6

Communication subsystem – UHF transceiver

Electrical Power Supply


BJT-Based Step-down DC/DC 30V_{DC}/5V_{DC} 300 mW survived **363 kRad(Si)!**, Laifr J., Diploma Thesis, 2011

Precursor for ESA/JUICE/RPWI Low Voltage Power Supply to be flown to Jovian system in 2022

JUICE

Exploring the emergence of habitable worlds around gas giants

FEATURES: Mass: 39 g

- BJT Power Switches (radiation)
- Discrete MPPT Regulator Step-up (charger), Main Converter Push-Pull, Nanocrystalline **VITROPERM Core** (high permeability, ultra-low losses)
- Assumed 2× A123 18650 LiFePo, 3,2V Cells, 2×1,1 Ah
- Four Separated Step-ups, (due to BJTs $\eta \sim 70\%$)
- BBM Output power (from Battery) ~ 0.8W @ 5V + 1.4W @ 3V3
- 3-4 sides covered by Si-cells, 2-3 sides covered by GaAs/GaInP/Ge TJ Cells

RELIABILITY IMPROVEMENTS:

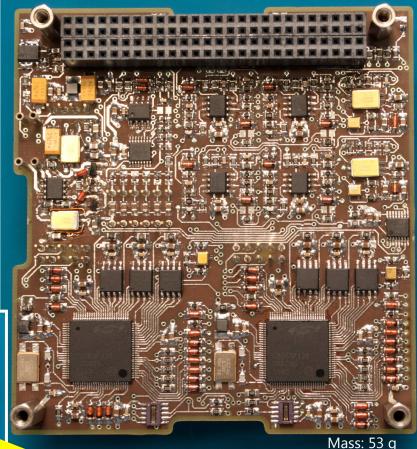
- Discrete Design, finally only 3 SiC JFETs needed
- SiC JFET Design Ongoing, Multi-input Choke TB implemented into One

≥ ∞

Mass: 133 g (incl. NiMH)

Cold Redundant OBC

FEATURES:


- 2× Silicon Laboratories Flash-based 8051 'flight proven' MCUs
- 2× Triplets of serial FLASHes 32Mb used as data buffer
- 2× RTC for Data stamps, uptime
- Digital VGA Cam input (TTL UART Cam)
- Complete HK measurements
- JFET&BJT-based linear voltage regulators (3V3)
- Distrubutes RESET signal to All Subs
- 8 MIPS @ 80 mW/5 V (with Cam ON 190 mW)

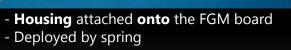
RELIABILITY IMPROVEMENTS:

- Discrete Power Arbiter with fuses
- 2× Discrete BJT-based WDTs
- Doubled Comm bus (Master)
- TMR Implemented for Data R/W
- Bus Drivers based on Derivators

Mass: 12 g (incl. harness)

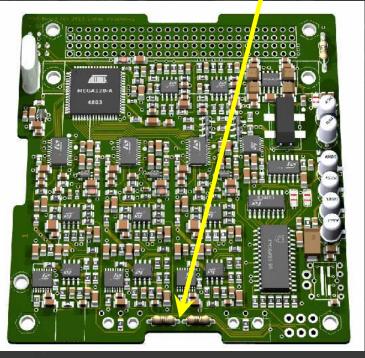
Low-Noise Fluxgate Magnetometer with PWM-based **Coherent Demodulation and Non-magnetic Detachable Scissor Boom**

FEATURES:


- Low-noise Fluxgate Triplet (**15pT**/ \sqrt{Hz} @ 1Hz) - Boom with electronics fits single board volume, incl. Doubled Firing (resistors+separation switches) - 1W / 10 s Firing

- 250 mW@5 V Operational/1 mW in Idle Mode

Mass: 18 g (Scissors only)


- Scissor's Housing - Two Parts - PEEK - Screwed together

- All - Non-magnetic Brass Joints

- Sensors mounted on the PEEK Header

Perpendicular Mount

- Mag. Field Sensors - Mass: **1 g** each Dimensions: 20×14×4 mm

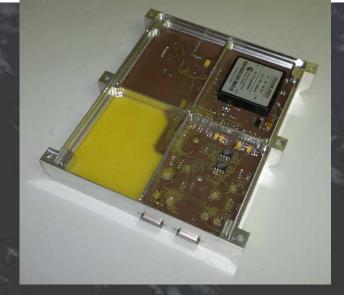
RELIABILITY IMPROVEMENTS:

- FRAM for the PWM-Sinus Data Samples (digi excitation & demod.)
- MOSFET-based power switch + additional fuse (OC won't kill S/C)
- 3× AD7714-5 type, 3ch each, **24-bit** Σ - Δ ADC, **TMR** cross-strapping
- Each channel digitized also by the internal ADC in MCU (10 bit)

Langmuir Probe Experiment

FEATURES:

- Two separated inputs for Langmuir Probes
- Plasma I/V Curves determination (\pm 50µA, sweep \pm 12V)
- Plasma Potential measurement (± 1500 V)
- Controlled **Floating Ground** potential (-15 up to +50V)


Intended to ESA/Lunar Lander/Lunar Dusty Environment and Plasma Package (**L-DEPP**) together with L-DEPP consortia leaded by Astronomical Institute, AS CR

- Current version 160×200 mm (6.3×7.8")
- Planned as a miniaturised PC/104 version for CTS

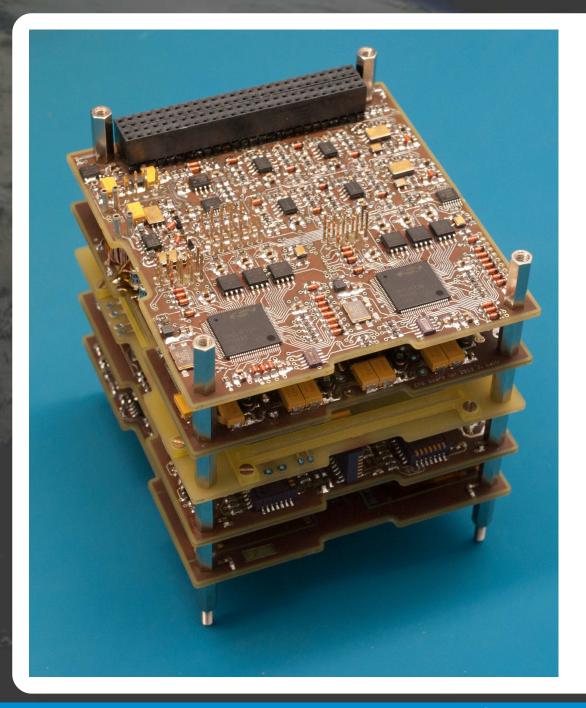


Image Credits: ESA

CzechTechSat Breadboard Model

The 'Tiny Solar Simulator' – a 'Space' on the Earth

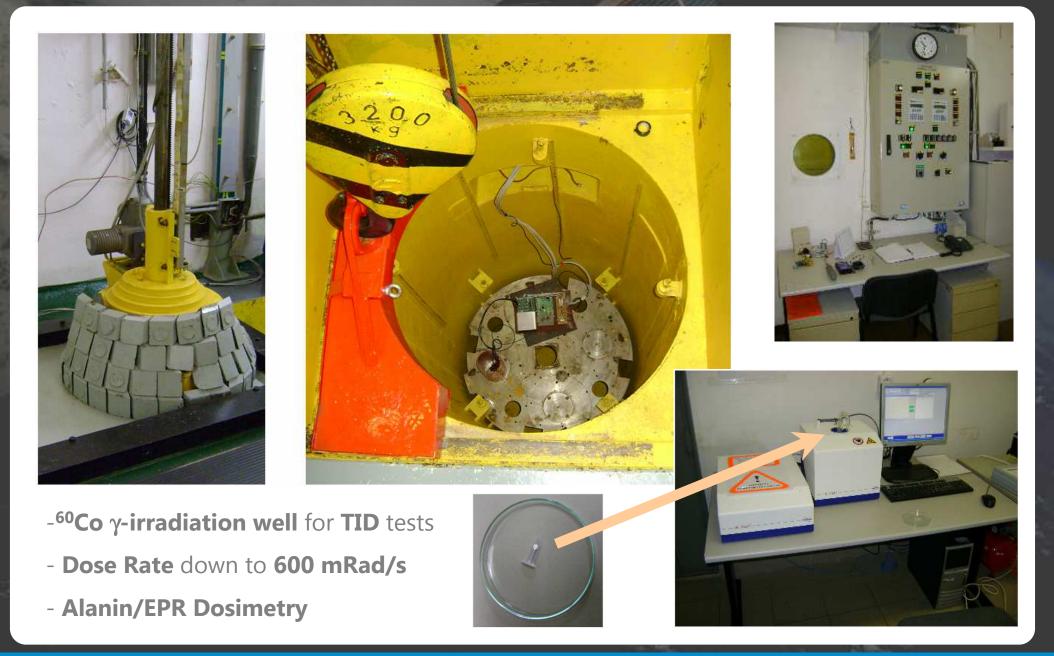
- Planned: Opticalbased magnetic levitator (easy implementation)

- Satellite hanging on thin 1 m/3ft long thread

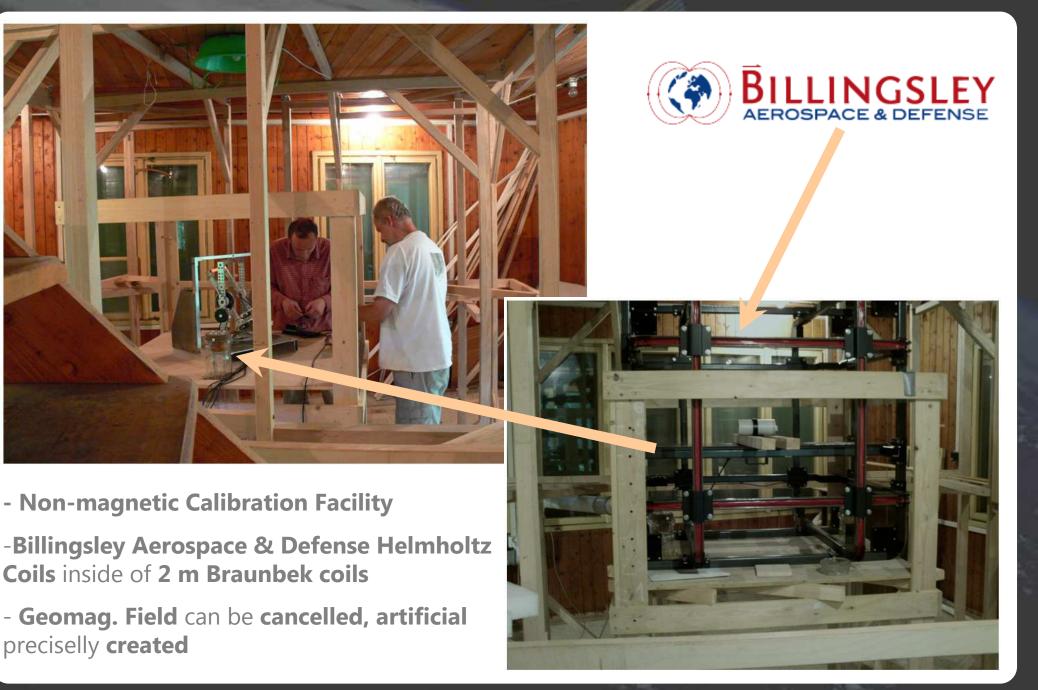
- Simulates: Single degree of freedom, Solar power input, Structure Heating

- Helmholtz Coils (~1000 m / ~3300 ft) of coil wire

- Linear Halogen light 200 W - equal to **Sun** at **LEO** (~1200W/m²)



- Interface with UHF TRX

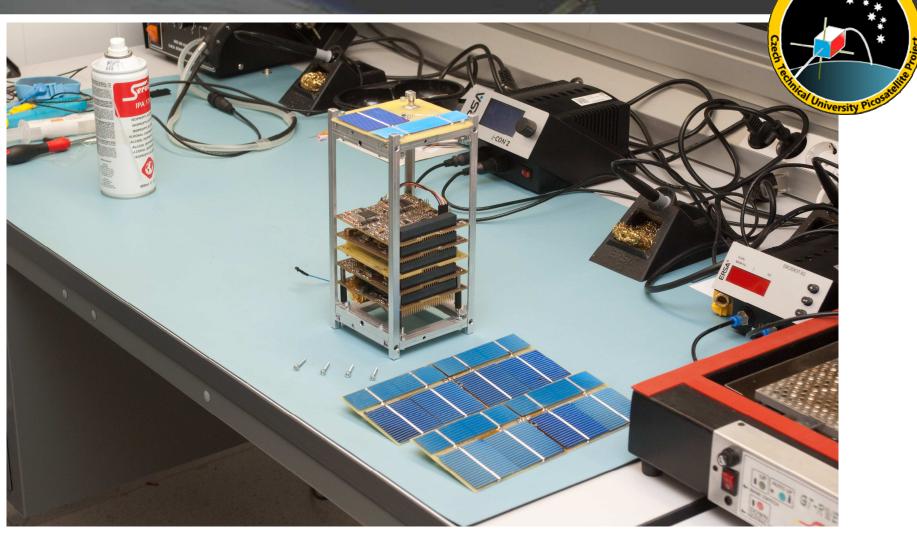

Helmholtz
Coil drivers
manufactured
(± 300 μT)
USB
PC SW
developed

Supporting Facilities – UJV Rez, plc. – TID Tests

Supporting Facilities – Pruhonice

Supporting Facilities – MAGLAB

wwwMAGLABcz Sensors and Magnetics Laboratory


- Magnetic calibrating facility for offsets and noise of magnetic sensors

Thermostated chamber -30 up to +90°C

- Guaranteed shielding factor of 100.000× @ DC

15

Conclusion & Outlook

- 9/2013 submit a proposal for ESA/BEXUS 18/19 (Strato Balloons), take a photo from the edge of Space
- continue in CTS development for next EU/Non-EU Launch opportunities
- go to 1U structure
- test the CzechTechSat avionics under irradiation

Stay tuned at 435 MHz! 73 de RS0CTS