

STRATEGIES FOR RAPID DESIGN AND DEVELOPMENT OF ALLSTAR-1 GROUND SEGMENT

COSGC

Vignesh Muralidharan, Michael Trowbridge, Quinn McGehan, Bill Irelan, Logan Smith

- Background
- Modular Design and Re-Usable Architecture
- Leveraging open source software and pre-existing protools
- Design and deployment practices

Colorado Space Grant Consortium

- NASA sponsored network of higher education institutions and a foundation in Colorado charged with inspiring students to work in the space industry
- Students design, build and operate spacecraft

Our Ground System

- □ Heterogeneous: more than one type of satellite
- Hub-spoke architecture
 - Remote sites link to central station

6

Terminals (x4)	\$500 (ea)
InControl	No cost educational Demonstration License
Radio, Antenna, etc	\$10,300
Server (x2)	\$500 (ea)
Total	\$13,300

- - 3U CubeSat

ALLSTAR-1 will carry imaging payload (Lots of data, low com time).

ALLSTAR-1 Architecture

ALLSTAR Constraints

- Low integration time (less then one year of development).
- Low personnel (2-3 students working 10 hours a week).
- Capex for ALLSTAR ground segment projected to be in low thousands.
- Due to University building code geography, ground station is far away.

Architecture: Fall 2009

Ground Station Pattern

Overall Architecture

ALLSTAR-1 Architecture

How to simplify ALLSTAR

- □ Re-use existing ground station
- □ Re-use existing server infrastructure
- Re-use existing MOPS team
- Build custom Remote Gateway

GROUND SEGMENT

- □ Serves role of Remote Gateway for ALLSTAR-1
- □ Low cost (\$45).
- Runs Ubuntu Linux (simplifies development)

Beaglebone Deployment

- Install Tomcat/Socat with apt-get
- Enable SPI Dev
- Develop custom class to interface with ALLSTAR

¹⁸ Using Existing Technologies

Commercial Internet

_

19

- 🗆 Cheap
- Easy to setup and use
- □ Wide area of coverage
 - Easy to integrate new ground stations
- Interchangeable module

Security & Commercial Internet

- 2 layers to ground digital board: VPN/IPSEC encryption, ssh AES encryption
- 2 layers of firewalls to ground digital board: Router firewall, VPN gateway
- Farm side VPN gateway does not accept incoming connections – only makes outgoing connections to Campus VPN concentrator

20

- Distributed System (Multiple hardware, software players).
- Very complex

□ Pre-existing, well tested communications protocol.

Typical Ethernet Setup

High Level Processing (Resends, Ports/Sockets, etc.) Use's a MAC address to filter incoming data and format outgoing data

Physical Transmission of Data (Error Correction, Synchronization, etc.)

Transport Layer

- LWIP Lightweight IP
 - Popular Software Library
- TCP Transmission Control Protocol
 - Ensures data is correct and in order
- Media Access Controller (MAC)
 - Link Layer (Software and Hardware Bridge)
 - Manages data as 802.3 compliant frames
- PHY Controller
 - Interface between MAC and RF

□ Worst Case Efficiency (42 bytes) $\approx 61\%$

□ Best Case Efficiency (1500 bytes) \approx 98%

Digital Communications April 19, 2013

Starting with InControl

Includes user interface

Developers focus on mission-specific plugin

InControl-NextGeneration - Fle	eet Frame								_ 8 ×	
File Displays Users Window Hel	lp									
AVVE Display (Filter: Alarms and Warnin	igs)								X	
<u>File Edit Audible Acknowledge</u>	Execute									
Time	Source	Туре	Application			Message			ACK	
2003/01/26 14:55:14.546 F	7	PRC	lemo_features -	5 A.3.A.	2 - No response	received for	prompt in	*		
Fleet Status View	🛛 🌔 Tas	k Status Display							- 8 ×	
	File	Edit Task Schedule	Status							
		Start Time	Complete Time	Mission	Task	Activity	Approval Flag	Status	Туре	
STERK STERK STERK STERK				F3	EsaBlinding	AWE Message	true	Scheduled	AWE	
GS4 GS3 GS2 GS1 None None None None	F14 200	3/06/22 08:23		F3	Stationkeeping	Stationkeepin	true	Scheduled	Task	
				F3	Stationkeeping	AWE Message	true	Scheduled	AWE	
	Fut			F3	Stationkeeping	Stationkeepin	true	Scheduled	Procedur	
	200	3/06/25 18:02		GS2	CalibrateBBU	CalibrateBBU	true	Scheduled	Task	
				GS2	CalibrateBBU	AWE Message	true	Scheduled	AUE	
None None None None	None 200	3706727 22:12		F7	ClockAdjust	ClockAdjust	true	Scheduled	Task	
				27 27	ClockAdjust	AWE nessage	true	Scheduled	Awr	
				F /	CIUCRAGJUSC	secaujusccioc.	CTUE	schedured	FLOCEDUA	
	200	03/01/26 13:48:		F7	Demonstration	Demonstratio	n true	Executin	ng Task	
		03/01/26 13:48:		F7	Demonstration	demo_feature	s true	Executin	ng Procedur	
None demo demo demo	demo									
	200	3/01/26 13:48:200	3/01/26 13:48:3	5 F11	ResetBypassTim	e ResetBypassT	'intrue	Complete	e Task	
	200	3/01/26 13:48:200	3/01/26 13:48:3	1 F11	ResetBypassTin	AWE Message	true	Complete	AUE	
	Pst 200	3/01/26 13:48:200	3/01/26 13:48:3	5 F11	ResetBypassTim	e ResetBypass	true	Complete	e Procedur	
demo demo demo										
OOL Display									X	
<u>File E</u> dit Ackno <u>w</u> ledge										
Time		Source	Para	neter		Value		ACK		
OL started. demo SCC [Operator [2003/01/26 14:55:37,589										

© 2013 L-3 Telemetry West, Colorado Space Grant Consortium

Roles of the Plug-in

- Parses satellite-specific telemetry and beacons
- Puts telemetry into InControl
- Homogeneous interface to heterogeneous missions
- Generic plugin: We add a few things to ALLSTAR to our pre-existing interface.

29

Strategy Design Pattern

- Based on the Strategy design pattern
- Encapsulates key software behaviors
 - Easy to add new missions and behaviors
- Using Strategy paid off two late-cycle discoveries
 - Only minor code changes
 - Minimal regression testing needed

© 2013 Colorado Space Grant Consortium

Centralization

- All mission operations are at one facility
 - □ 1/3 personnel needed
 - Easier training, policy coordination
- Remote sites: on-call maintenance crew

- Modular architecture and re-usable architecture allows quick integration of new systems.
- Using existing technologies such as TCP/IP to allow rapid development and reduce testing.
- Strategy Design pattern, anticipating changes

Acknowledgements

- The Ground Segment team would like to thank:
 - Paul Blanchard of L-3 Telemetry West for the No cost Educational Demonstration InControl license
 - Mitch Seybold of L-3 Telemetry West for debugging/troubleshooting assistance
 - Kathryn Trowbridge for graphic design and the ground segment logo

- □ 1. The network is reliable.
- □ 2. Latency is zero.
- □ 3. Bandwidth is infinite.
- □ 4. The network is secure.
- □ 5. Topology doesn't change.
- □ 6. There is one administrator.
- □ 7. Transport cost is zero.
- □ 8. The network is homogeneous.

