

Improving CubeSat Communications

Nestor Voronka, Tyrel Newton, Alan Chandler, Peter Gagnon, Nate Storrs, Jory St.Luise, Rob Hoyt

Tethers Unlimited, Inc.

11711 N. Creek Pkwy S., Suite D113 Bothell, WA 98011 425-486-0100x678 voronka@tethers.com

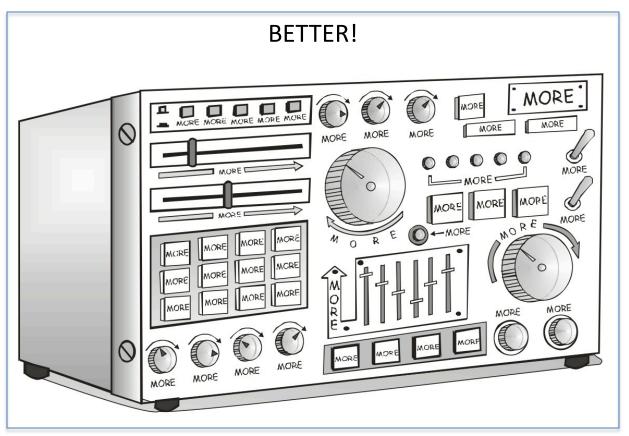
www.tethers.com

TUI & Comm? History and Motivation

- First TUI SDR was designed for relative navigation
 - Tethered CubeSats
 - Relative position important for tether dynamics knowledge and active control
- Also useful for
 - Fractionated Spacecraft (e.g. DARPA F6 clusters)
 - Collision avoidance
 - Relative position knowledge for orbit maintenance
 - Aid in pointing higher gain apertures
 - Distributed Sensing systems
 - Relative position knowledge for orbit maintenance
 - Timing for synchronized sampling
 - Knowledge of sensor baselines and orientations
- Antennas developed with radio for complete comm solution

FTHERS

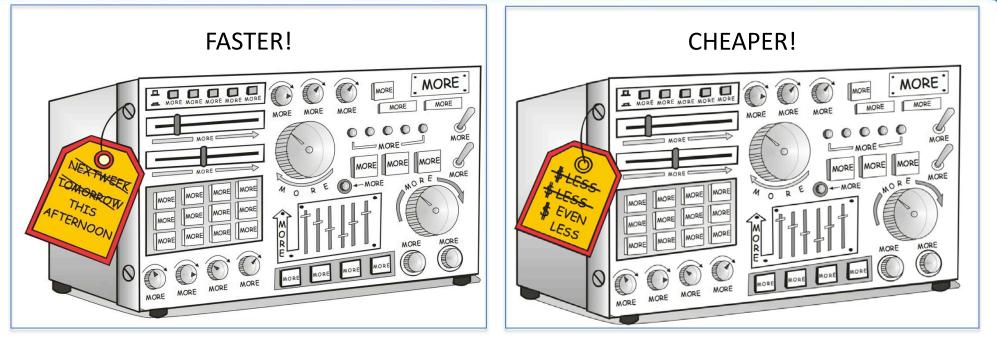
Advanced Propulsion, Power, & Comm for Space. Sea, & Air

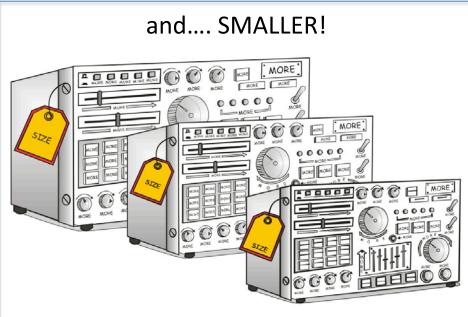

Desired CubeSat Comm System

Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

CubeSat Designers Dream

- Greater data throughput
 - Higher Data Rates
 - More Ground Stations
- Lower Data Latency


- Low/Acceptable SWaP-C
 - Spacecraft Radio
 - Spacecraft Antenna
 - Ground Station
 - Operations



We also want...

Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

TETHERS

Some Factors Limiting Data Throughput

- System Configuration 1: Omni <-> Omni
 - TX: omni antenna (transmit power constant)
 - RX: omni antenna
 - RESULT: *Data rate decreases* with increasing frequency
- Configuration 2: Omni <-> High-Gain
 - TX: omni antenna
 - RX: high-gain (directional) antenna with fixed aperture size
 - RESULT: *Data rate independent* of frequency
- Configuration 3: High-gain <-> High-gain
 - TX: high-gain (directional) antenna with fixed aperture size
 - RX: high-gain (directional) antenna with fixed aperture size
 - RESULT: *Data rate increases* with increasing frequency
- CONCLUSION: Higher gain antennas, with higher operating frequencies, produce <u>higher data rates</u>

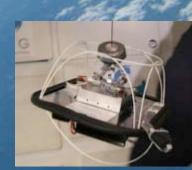
80W PEAK POWER (@1AU)

erCube S,

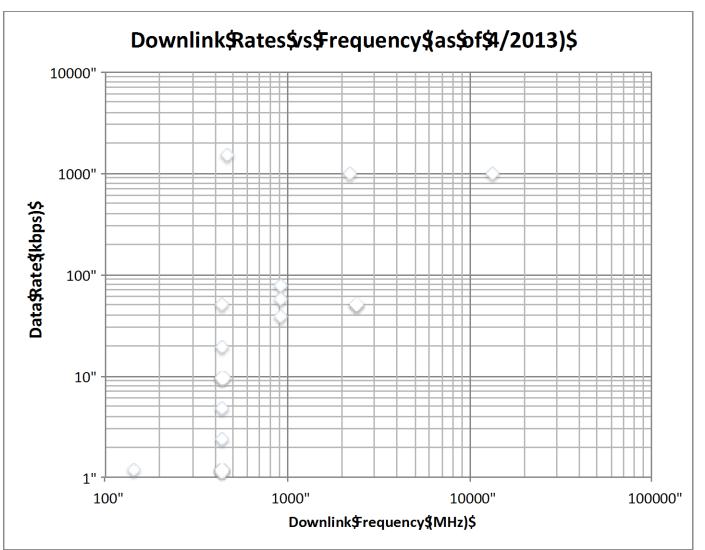
SunMill[™] Deployable, Steerable Solar Array For 3U Cubesat Structures

High power, highly capable missions: Enabled

- 0.45U system volume (incl. controller)
- Spectrolab CIC laydown heritage
- Fully customizable panel length
- Available for order
- Full hemispherical pointing



0-g Panel Deployment Testing



0-g Gimbal Testing

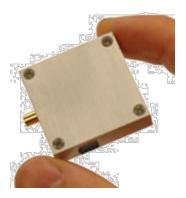
www.tethers.com

Historical CubeSat Data Rates

• CubeSats launched to date shows trend of higher data rates at higher downlink frequencies

www.tethers.com

TETHERS


INLIMITED

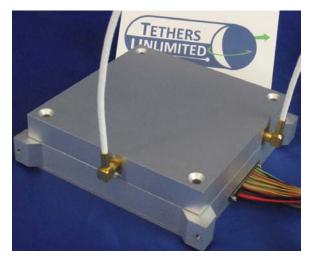
Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

Moving to higher frequencies

Advanced Propulsion, Power, & Comm for Space, Sea, & Air

- Most downlinks at ≈ 437 MHz
- Some (not all) radio options to move to higher frequencies
 - S-band (e.g. 2.2-2.3GHz, 2.4-2.5 MHz)
 - Astrodev Beryllium: 10s to 1000s of kbps
 - Clyde Space STX: 2 Mbps
 - ISIS TXS: up to 100kbps
 - X-band (8.0 8.4 GHz)
 - Syrlinks EWC27: 2.8 to 100Mbps
 - CNES: up to 50Mbps
 - Ka-band
 - JPL ISARA: up to 100Mbps
 - Antarctic Broadband: 16Mbps transponder
 - TUI's SWIFT-HPX: 100Mbps (in development)

SWIFT-AFSCN(/NEN/USB) radio

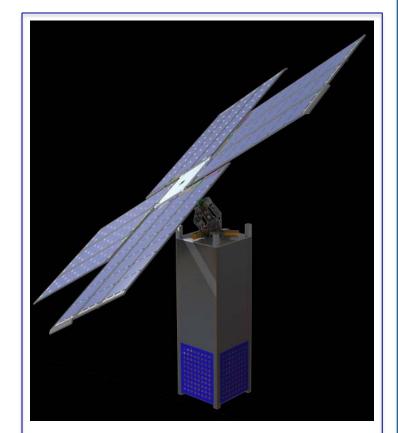

Dual-band Receiver

- SGLS: 1760-1840 MHz carrier range
- USB: 2025-2100 MHz carrier range
 - Up to 1Mbps command uplink (ICD limited)
- Transmitter
 - S-band: 2200-2300 MHz, >30dBm (1W) output
 - AFSCN rates to 10Mbps, and NEN up to 20Mbps
 - Hardware can support up to 100Mbps
- Encryption capabilities
 - Internal AES-256
- Coherent turn-around ranging
- SWaP
 - − Size: □82 x 25 (H) mm (0.25U) boards
 □86 x 35 (H) mm in enclosure
 - Mass: <0.4kg
 - Power
 - 3.2W single channel receive only
 - 6.9W transmit only
 - 10.3W transmit and dual channel receive

TETHERS

Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

SWIFT-HPX Crosslink

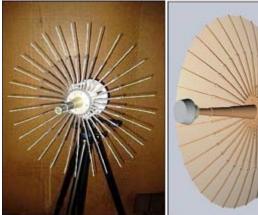


• SWIFT-HPX will provide CubeSat-scaled crosslink communication

- 100Mbps crosslink at Ka-band frequencies with 1W TX output
 - 100Mbps @ 100km range
 - EESS/SRS ITU frequency allocations
- Can also close downlink to ground stations with >12m diameter dish antennas

System needs high-gain antenna

- Ka-band patch antenna array with
 >24dBi of gain that fits on CubeSat face (83x100mm)
- Requires 1° pointing

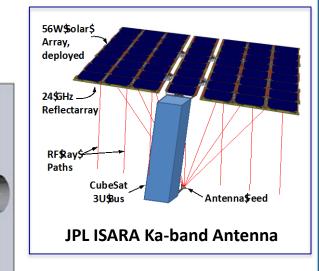


Notional 3U CubeSat with two RHCP 83x100mm Ka-band patch antennas for multibeam coverage (e.g. to allow for multiple intersatellite crosslinks without attitude maneuvers).

High gain antenna also needed

- Due to limited electrical power available on the CubeSat platform, and especially beyond LEO, high-gain antennas needed to close links
- Deployable antennas provide high gain, albeit with addition mission risk

 Pointing required to close link
- Non-deployable antennas may provide sufficient gain to close up/down links at reasonable rates
 - Patch antennas are low risk, and easy to integrate



Miniature Deployable High Gain S-band Antennas 18 dBi gain, 50 cm DIA Boeing system pictured above; NGC system demo'd on Mayflower CubeSat

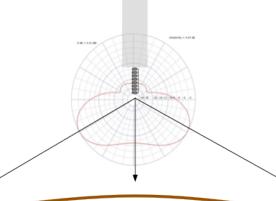
FTHERS

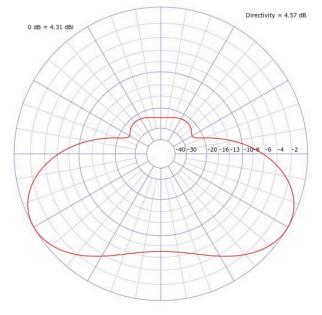
Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

11

www.tethers.com

Medium Gain Antenna



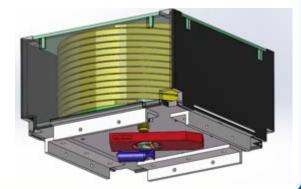

Range-compensating/isoflux pattern

- Can reduce/eliminate signal strength variations due to line-of-sight path length changes during a pass
- At 700km ≈10dB variation with
 10° elevation at antennas ±62°

Quadrifilar Helical Antenna (QFHA)

- Pattern readily shaped to isoflux by varying antenna geometry
- Circularly Polarized with very good axial ratio in main beam
- Fairly insensitive to ground planes and surrounding structures

TUI Deployable UHF Antennas


• Initially design for LEO SATCOM

- Range-compensating/isoflux pattern to provide coverage over the entire Earth FOV
- Quadrifilar helical antenna (QFHA) produces desired gain pattern with good circular polarization
- No pointing required if spacecraft is gravity gradient stabilized
 - Additonal mass can be place on tip of antenna for more stability

UHF Deployable Antenna Module

- Stowed Volume: Less than 0.5 U
- Deployed size $\approx 1.5 \times 0.07 \text{ } \text{\emptyset} \text{ } \text{m}$
- Mass: < 0.45 kg</p>
- Peak Gain: > 4 dBic

UHF High-gain (> 14dBi) helical antenna in development

FTHERS

Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

Maximizing Channel Throughput

- Communication standards such as DVB-S2 use Variable Coded Modulation (VCM) or Adaptive Coding Modulation (ACM) modes to optimize downlink capacity
- Variable Bit Rate (VBR) is simpler and still fairly efficient
 - Requires full-duplex comm and
 - Adaptive Radio Technologies,
 LLC Firehose Radio
 - Designed to maximize bits/Joule
 - Up to 10Mbps downlink rate at USB frequencies

		Spectral Efficiency	Data Rate		Gross Bit	Info bits
MODulation	CODing	(info bits/symbol)	(Mbps)	Eb/No (dB)	Rate (Mbps)	(Mbps)
QPSK	1/4	0.49	20.43	-5.4	83.33	20.83
QPSK	1/3	0.66	27.35	-4.3	83.33	27.78
QPSK	2/5	0.79	32.89	-3.3	83.33	33.33
QPSK	1/2	0.99	41.20	-2.0	83.33	41.67
QPSK	3/5	1.19	49.51	-0.8	83.33	50.00
QPSK	2/3	1.32	55.09	0.1	83.33	55.56
QPSK	3/4	1.49	61.98	1.0	83.33	62.50
QPSK	4/5	1.59	66.13	1.7	83.33	66.67
QPSK	5/6	1.65	68.94	2.2	83.33	69.44
8PSK	3/5	1.78	74.16	0.7	125.00	75.00
QPSK	8/9	1.77	73.60	3.2	83.33	74.07
QPSK	9/10	1.79	74.53	3.4	83.33	75.00
8PSK	2/3	1.98	82.53	1.8	125.00	83.33
8PSK	3/4	2.23	92.84	3.1	125.00	93.75
16APSK	2/3	2.64	109.88	2.9	166.67	111.11
8PSK	5/6	2.48	103.27	4.6	125.00	104.17
16APSK	3/4	2.97	123.61	4.2	166.67	125.00
8PSK	8/9	2.65	110.25	5.9	125.00	111.11
8PSK	9/10	2.68	111.63	6.2	125.00	112.50
6APSK	4/5	3.17	131.90	5.0	166.67	133.33
16APSK	5/6	3.30	137.51	5.6	166.67	138.89
32APSK	3/4	3.70	154.30	5.7	208.33	156.25
16APSK	8/9	3.52	146.80	6.9	166.67	148.15
16APSK	9/10	3.57	148.64	7.1	166.67	150.00
32APSK	4/5	3.95	164.65	6.7	208.33	166.67
32APSK	5/6	4.12	171.65	7.3	208.33	173.61
32APSK	8/9	4.40	183.24	8.7	208.33	185.19
32APSK	9/10	4.45	185.54	9.1	208.33	187.50

TETHERS

Advanced Propulsion, Power, & Comm. for Space, Sea, & Air

Adaptive Rad
Р.
Los Alc
Phone
info@Adan

Applications

- CubeSats and small satellites
- UAVs and rovers
- Harsh environments
- Remote Sensing

Data Rates

- Adaptive high-speed downlink:
 - 10 Mbps peak

Summary

- Higher frequency and higher gain antennas (both spacecraft and ground station) improve throughput
- Deployables enable higher throughput
 - Deployable solar arrays for power
 - Enables greater power for data transmission
 - Deployable antennas for higher gains (especially at higher operating frequencies)
- Dynamic modulation, coding and/or data rates maximize channel throughput

MARTINE ST

Advanced Propulsion, Power, & Communications For Space, Sea, & Air