

#### Flat Flexible Cables (FFC) in Picosatellites

#### Petras Karuza, Geoff Maul, David Hinkley

The Aerospace Corporation Mail Stop M2-241, P.O. Box 92957, Los Angeles, CA 90009-2957 Petras.Karuza@aero.org Geoffrey.A.Maul@aero.org David.A.Hinkley@aero.org

Mechanics Research Department 11 August 2012

#### Motivation: PSSCT-1 Crimp-Harnesses



- Get rid of the mess!
- Make better use of our internal volume.
- Make assembly and disassembly of the satellite quicker and easier.



A motivation for change

# **Common Harnessing Methods**

#### 1. Board-to-Board

- Avoids harnessing
- Convenient
- Reliable
- Requires planning
- Restrictive
- Long lead time

# 

#### 2. Board-to-Wire

- Reconfigurable on the fly
- Place components where they need to go
- Constructed after mechanical assembly
- Can be unreliable
- Cable management required
- Prone to mis-wiring (need test harnesses)





#### Alternative to Wire-to-Board Crimp Type Harnessing

- Flat Flexible Cable (FFC) are single copper layer between two layers of insulation
- FFC are available as off-the-shelf straight sizes of fixed lengths
- Make your own custom shape, with higher current capability
  - For reference: a single layer design, 5 pcs delivered, is ~\$1500
  - Advice: have the custom vendor send you a sample first





# Benefits of using FFC

- Cables can run through narrow clearances or adhered to the body of the spacecraft
  - Particularly useful when running cables with many contacts
- Cables can be routed such that there is no confusion as to what connector they route to
  - Difficult to shift a FFC sideways along its plane to connect it to an identical connector. Chances are that you will damage it.
- FFC cables efficiently stack on top of one another to route to different PCB's on an electronics stack (which are also stacked on each other...)
- Cabling mistakes are a thing of the past in mass production
  - Cables can be mass produced which results in less time spent worrying if a cable is wired correctly
  - Each CubeSat that is produced will take less time to build which results in cost savings



#### Drawbacks of using FFC

- Due diligence is needed in the initial design stage to accommodate for harness routes
  - Result: Design phase may take longer
  - Orientation of harness needs to be considered with every board made
- Must remake an incorrect FFC (cannot rewire..)
  - \$1500 typical for a custom cable (5 piece lot)
  - 2-3 week turnaround or longer for "reasonably priced" custom cables
- Contacts wear out faster than typical "crimp" contacts
  - Advice 1: use one of your 5-piece lot as the workhorse and keep the others pristine for flight
  - Advice 2: use standard FFC off-the-shelf (if not a high current special application) for engineering and development to not waste polyimide high price custom cables



# Verifying FFC Connector 0.5 A Max Limit in Vaccuum



#### **End #1** Thermistor under connector daughterboard

6 inch FFC off-the-shelf thermally bonded at 3 points (similar to application)

End #2 connector daughterboard

| Current<br>(A) | Presssure<br>(mTorr) | Duration<br>(hours) | Final Temperature<br>(deg C) |
|----------------|----------------------|---------------------|------------------------------|
| 1.0            | 35                   | 1.5                 | 27.3                         |
| 1.5            | 10                   | 10                  | 33.5                         |
| 2.0            | 10                   | 10                  | 41.2                         |
| 2.5            | 10                   | 16                  | 50.6                         |

<u>Please repeat this</u> <u>test for your cables</u> <u>and application (i.e.</u> <u>current requirement)</u>



FFC connector far exceeds 0.5A maximum specification

#### FFC Example: PSSCT-2 Solar Cell Harness

- <u>Problem</u>: PSSCT-2 had 14 solar cells adhered to an aluminum body which required harnessing to the Solar/Battery PCB
- <u>Usual solution</u>: crimp style harnesses BUT clearances are tight so running wires around the SC body was not an elegant solution
- <u>FFC solution</u>: Adhere an FFC to the inside of the satellite body and have PCB thru-holes present on the harness protrude exactly at drilled hole areas on the body where wires could be soldered



#### **PSSCT-2 Solar Cell Harness**

Step 1: Draw harness in Solid Works



Step 2: Use "sheet metal layout tool" to unfold it







# FFC Solar Harness installed into PSSCT-2

#### Step 3: Fabrication

- get sample from vendor
- look for clean cut ends where they enter FFC connector
- look for doubler being well bonded
- Step 4: Use Kapton tape to bond harness to spacecraft wall.

Tape is easily removed so this is good bonding method.





# FFC Solar Harness installed into PSSCT-2

- **Step 5**: Run short wires from the FFC to interconnects on the solar cell. Goal is to keep resistance down.
- **Step 6**: Stake the FFC thru hole solder points to protect from debris and for rigidity because FFC thru hole features are weak (tear out). Never put a bend next to a solder joint on a FFC because the FFC will break.





#### FFC Solar Harness installed into PSSCT-2

Step 7: Stake the FFC connector to the connector in two waysa) use a small piece of Kapton tape to prevent FFC pull-outb) use staking so FFC connector lock stays locked

Kapton tape

Staking points (Recommended: Arathane 5753 A/B with thickener)





#### **PSSCT-2** with Solar Harnesses Installed





FFC cables are / conveniently stacked

Triax Reaction Wheel Assembly



#### FFC for AeroCube-4 Moveable



FFC across a moving hinge for Wing #1



#### Summary

- Flat Flexible Cables (FFC) improve packaging and ease of assembly
- The FFC connectors are rated for 0.5A but can handle more
  - You can also double up on channels for high current needs
- Custom FFC are designed with CAD sheet metal tool
- Custom FFC take about 2-3 weeks to fabricate (1 week with rush)
- Custom FFC yield 1 panel for approximately \$1500
- Custom FFC can have 1 oz or 2 oz copper just like printed circuit boards
- Custom FFC can have unique features like thru holes or open copper
- Watch out for shoddy work
  - Get a sample from your vendor
  - Look for well cut ends that interface with connector
  - Look for well bonded doubler



#### Acknowledgements

The Aerospace Corporation's office for Sustained Experimentation and Research for Program Applications funded this effort

The Space Test Program, Houston Office for exemplary integration service on STS-135

The SMC/XR program office for persistent support (image courtesy NASA and the USAF Space Test Program)