

High Power Panels to Enable High-Performance CubeSat Missions

Nate Storrs, Nestor Voronka, Jonathan Wrobel, Jeff Slostad, Vince Ethier

Tethers Unlimited, Inc.

11711 N. Creek Pkwy S., Suite D113
Bothell, WA 98011
425-486-0100 information@tethers.com

www.tethers.com

High Performance CubeSats

Outline

- New Systems
 - Deployable Array
 - Gimbal
 - Propulsion
 - Comm.
- Lessons Learned
- New Mission Capabilities

Deployable Array Overview

- Power System Goals:
 - Low volume
 - High reliability/low risk
 - Simplified operation
- 12x 2mm thick composite panels
 - 3 panels per side of the CubeSat
- 80W peak and 49W OAP delivered from PPU
- Full hemispherical pointing achieved by the Gimbal mechanism
- Developed via the Army SBIR program

Composite Solar Panels

- Carbon fiber structure composed of unidirectional and woven fibers strategically placed for stiffness profile
- Each panel 1 mm thick plus 1 mm rails around cells
- Embedded Cu tape reduces need for wiring on panels
- Built-in hinge features reduce part count and increase manufacturing reliability
- Outer panels' cells face away from body providing the option for pre-deployment power

Deployable Array CONOPS

- Discrete movement of the panels
 - Gimbal can move panel 2.5° ahead of incidence angle and then power down until panels fall 2.5° behind incidence angle
- This operation scheme allows for power savings by powering down the motors and relying on the detent torque through the gearhead to hold the panels in place.

Steady State Temp Thermal Analysis

- Carbon fiber panels will be 78% covered by solar cells
- Due to panel thinness, good thermal conduction to the back side allows comparable radiative cooling to Al

Configuration	Panel Temp
Al Panels	64 C
CF Panels	65 C
PCB Panels	71 C
Body Mount	124 C

Panel Design Maximizes
Cell Efficiency and
Shades CubeSat Body

"Carpal-Wrist" Gimbal

- 3 stepper motors achieve 3 DOF
 - Hemispherical pointing on nearly any radius
- Gimbal motivates panel deployment
 - No added actuators needed

- Mechanism designed for accuracy over an extended lifetime
 - Simulated 3 years of orbital motion and maintained accuracy to remain within 1% of peak power
- No cable windup
 - Gimbal mechanism does not twist, allowing cables to easily pass through mechanism
- Qualified to CDSv12 requirements

Gimbal Video

Power-Enabled Propulsion

Water Electrolysis Thruster (WET) Propulsion

- On-orbit electrolysis of water into gO₂ and gH₂ enables high-I_{sp} propulsion while avoiding stored energy on launch to conform to P-POD requirements
- High-thrust rates: up to 6 m/s of Δv-per-orbit for a 3 kg CubeSat
- 500 μN-s bit-impulse, appropriate for attitude control and station keeping
- Modular, stand-alone propulsion module

Prototype

Power-Enabled Propulsion

Scalable Propulsion

- The WET propulsion unit is highly deformable and can be easily scaled to a desired total impulse or interior volume form factor
- Favorable scaling: 300 Ns per 100g of water (100 m/s Δv for a 3 kg CubeSat)
- The thruster can be designed to fit in the interior volume of the PPOD pusher-plate spring, freeing the 3U volume
- Completely green propulsion system, using de-ionized water
- The advantage over similar-scale electric propulsion approaches is the higher Δv available per orbit and the cleaner exhaust plume of the H_2/O_2 rocket.

Test Firing

Power Enabled Communications

- More power enhances CubeSat communications
 - More power → higher EIRP (radiated power)
 - Higher EIRP → faster data rates
 - Higher EIRP → more link margin
 - More sophisticated processing w/ SDRs
 - Lower bit error rates
 - Spectrally efficient waveforms → faster data rates
 - Improved filtering for spectral mask compliance
 - Digital predistortion maintains spectral efficiency over system lifetimelifetime of system

SWIFT-SDR™ CubeSat Radios

- Unprecedented capabilities for CubeSat applications
- Programmable
 - FPGA-based w/ lots of RAM and Flash
- Flexible
 - Multiple RF frontends to support different bands
 - Flexible host spacecraft interfaces
 - 100% runtime programmable
- Compatible
 - 82mm square for Colony-II bus
 - Type-1 encryption ready
- High performance
 - >100 MHz bandwidth
 - 100% phase coherent
- Reliable and fault tolerant
 - Latchup detection and protection
 - Thermal and power monitoring

SWIFT-RelNav™

 Cluster navigation, communication, and timing

Performance

- < 0.1 m ranging precision (1- σ)
- < 1° attitude precision (1- σ)
- Crosslink data rate > 15 Mbps
- Timing synchronized to $< 20 \text{ ns } (1-\sigma)$
- No sensor pointing required
- No external references (i.e. GPS) required
- Scalable to large number of spacecraft
- Specified performance up to 10 km

SWaP

- 82 x 82 x 25 mm
- -0.4 kg
- 3.2 W RX6.9 W peak TX

SWIFT-AFSCN™ Specifications

- Simultaneous dual-band receiver
 - SGLS: 1760-1840 MHz
 - USB: 2025-2100 MHz
- >1W transmitter
 - S-band: 2200-2300 MHz, > 30 MHz BW
- Encryption ready
 - Integrated AES-256 encryption
 - Compatible w/ Type-1 encryption
- 100% runtime programmable
- Coherent turn-around ranging
- SWaP
 - 82 x 82 x 25 mm
 - < 0.4 kg
 - 3.2 W RX6.9 W peak TX

SWIFT-TacSatComm™

- System to communicate w/ standard Army issue handheld radio
- Dual-band transceiver
 - UHF @ 56 kbps
 - > 4 W transmit power, with EIRP > 10 W
 - S-band backhaul link
 - Encryption, FEC, Doppler compensation
- High gain antenna
 - Deployable
 - Steerable w/ gimbal
- SWaP
 - Size: 0.5-1U
 - Power: < 14.7 Watts</p>

TacSatComm

New Mission Capabilities

- Orbit Agility for Reconfigurable CubeSat Constellations
- Cis-Lunar CubeSat missions
- Orbital Debris Remediation using CubeSats

