

S-Band CubeSat Communications with the Open System of Agile Ground Stations (OSAGS)

Kerri Cahoy, François Martel, Greg Huffman, Frank Hall Schmidt, Anne Marinan kcahoy@mit.edu fm@space.mit.edu

CubeSat Developer's Workshop August 12, 2012

Overview

- OSAGS S-Band Ground stations
 - Location
 - Control center
 - Heritage
 - Parameters
 - Current status
- CubeSat Payload Telemetry System
 - Parameters
 - Status
- Operations and licensing

Location

Location

OSAGS Heritage

- Ground stations originally successfully used to support the MIT HETE-2 mission
 - High Energy Transient Explorer (Oct. 2000)
- NASA SBIR with Espace to upgrade ground stations
 - Collaboration NASA ARC
 - Software defined radio
 - Available for nanosatellites and CubeSats

Ground Station Parameters

Parameter	Value	Units			
Uplink Frequency	2.025 – 2.120	GHz			
Downlink Frequency	2.200 – 2.300	GHz			
Antenna Diameter	2.3	m			
Antenna Gain	31	dBi			
Polarization	RHCP	-			
Transmit Power	15.44	dBW			
Data Rate	< 3.5	Mbits/sec			
G/T	6.9	dB/K			

GS Link Budget Values

Parameter	Value	Units			
Beamwidth	3.5	degrees			
Efficiency	50	%			
Back-lobe Gain	-30 dB				
System Noise Temp	290	K			
LNA Gain	0	dB			
Antenna to LNA Loss	1	dB			
LNA to Receiver Loss	0	dB			
Pointing Loss*	1	dB			

^{*}pointing 30% of main lobe beamwidth

Upgrades in 2010-2011

New:

- 2.3 m antennas
- Counterweights
- Feed and feed arms
- Diplexers (BPF)
- LNA
- 4 Ettus USRP2 **SDR** transceivers (redundancy)
- Reuses HETE-2 power amplifiers
- Can support several missions
 - 5 MHz NTIA S-band BW limit
 - Handles up to 3.5 Mbits/sec
- Remotely configurable

Interface

8/12/2012

S-Band Payload Telemetry System AEROASTRO

- PTS
- RF Board + Digital Processing Board
 - 2 inputs, 2 outputs
 - Half-duplex

	Uplink	Downlink					
Frequency	2.025-2.120 GHz	2.20-2.30 GHz					
Data Rate	0.01 – 0.1 Mbps	0.01-1.0 Mbps					
Power	2.0 W	3.6 W					
Output Power	N/A	1.0 W					
Modulation BPSK, QPSK, OQPSK, CPFSK							
Standby Power: 0.75W							
Dimensions (LxWxH): 90.17mm x 95.89mm x 35mm							
Mass: 0.094kg							

Cost: \$6000 per unit

Additional HF/VHF Rx Capability

Takes GPS clock input

	HF Rx	VHF Rx		
Frequency	100 kHz – 10 MHz selectable	60 MHz – 1 GHz selectable		
Bandwidth	100 kHz – 10 MHz selectable	100 kHz – 10 MHz selectable		
Sampling	14 bits I / Q up to 20 Ms/s	14 bits I / Q up to 20 Ms/s		
Adjustable RF Gain	0 – 40 dB	0 – 44 dB		
RF inputs	2	1		
Power	1 W from 6 V supply	2.2 W from 6 V supply		

MIT projects baselining PTS

S-Band CubeSat Antenna Design

- Two custom patch antennas
 - Uplink, downlink
 - Truncated corners RHC
 - Probe feed
 - SMA coax PTS board
 - Dielectric RT Duroid 5880
 - Thickness 1.57 mm
 - $\varepsilon_{\rm r} = 2.2$
 - Mount on nadir facing body panels

S-Band CubeSat Antenna Design

Parameter	Uplink Antenna	Downlink Antenna			
Length	47 mm	43 mm			
Corner Truncation	5.4 mm	4.9 mm			
Center Frequency	2.088 GHz	2.27 GHz			
Return Loss	-21.2 dB	-16.02 dB			
Gain	7.20 dBi	7.45 dBi			
Half-Power Angle	85 deg	84 deg			
Bandwidth	38 MHz	35 MHz			
Mass	11.2 g	11.08 g			
Price	\$350	\$350			

MicroMAS Link Budget S/C

- Frequency = 2.2 GHz
- Power = 0 dBW
- Antenna Nadir Facing (Gaussian Gain Pattern)
- 3dB Beamwidth = 70°
- Main Lobe Gain = 7.4 dBi
- Efficiency = 50 %
- Polarization: RHCP
- Coded Data Rate: 694 kbps
- Information Rate: 347 kbps
- Modulation: OQPSK

Frequency Licensing

- 2.2—2.3 GHz S-band
- Gov't. rights to spectrum
- Two approaches
 - DD-1494 with gov't. sponsor
 - FCC CommercialExperimental License
- Foreign ground stations
 - OSAGS has established representatives at Singapore and Cayenne (France)

MicroMAS Coverage Study

	Max P/L Data Rate to	Bus & F	Required	Storage Onboard Bu	s		ASSUME Consta	stant 19.2 kbps				7/20/2012	CBC	CBC		
	0°			30°	1		42°		60°			90°				
	h = 300km, i = 0°	Gap	Access	h = 300km, i = 30°	Gap	Access	h = 300km, i = 42°	Gap	Access	h = 300km, i = 60°	Gap	Access	h = 300km, i = 90°	Gap	Access	
_ ا	Mean (s)	2256.4	332.1	Mean (s)	6442.2	282.3	Mean (s)	8648.7	280.1	Mean (s)	10953.0	273.7	Mean (s)	12289.7	267.3	
볼	Max (s)	2904.1	384.3	Max (s)	30314.9	412.0	Max (s)	30457.6	408.9	Max (s)	30476.2	402.7	Max (s)	30421.8	390.3	
Ιĕ	Req P/L Rate (bps)	ps) 19200		Req P/L Rate (bps)	19200		Req P/L Rate (bps)	19200		Req P/L Rate (bps)	19200		Req P/L Rate (bps)	19200		
	Max P/L Rate (bps)	late (bps) 44000		Max P/L Rate (bps)	14500		Max P/L Rate (bps)	10750		Max P/L Rate (bps)	8250		, , , ,		50	
	Req. Storage (MB) 18.50			Req. Storage (MB)	63.00		Req. Storage (MB)	58.00		Req. Storage (MB)	49.25		Req. Storage (MB)	41.13		
	h = 400km, i = 0°	Gap	Access	h = 400km, i = 30°	Gap	Access	h = 400km, i = 42°	Gap	Access	h = 400km, i = 60°	Gap	Access	h = 400km, i = 90°	Gap	Access	
1_	Mean (s)	2396.4	425.9	Mean (s)	5579.3	346.5	Mean (s)	7486.1	342.4	Mean (s)	9589.5	337.3	Mean (s)	10858.1	326.6	
볼	Max (s)	3057.9	479.7	Max (s)	25229.3	501.7	Max (s)	31255.9	497.8	Max (s)	31241.6	490.1	Max (s)	41864.1	474.6	
15	Req P/L Rate (bps)	192	200	Req P/L Rate (bps)	192	00	Req P/L Rate (bps)	192	00	Req P/L Rate (bps)	192	200	Req P/L Rate (bps)	19200		
	Max P/L Rate (bps)			Max P/L Rate (bps)	20250		Max P/L Rate (bps)	151	00	Max P/L Rate (bps)	117	'50	Max P/L Rate (bps)	100	10000	
	Req. Storage (MB)	22.	.25	Req. Storage (MB)	79.	88	Req. Storage (MB)	72.	75	Req. Storage (MB)	60.	25	Req. Storage (MB)	46	38	
	h = 500km, i = 0°	Gap	Access	h = 500km, i = 30°	Gap	Access	h = 500km, i = 42°	Gap	Access	h = 500km, i = 60°	Gap	Access	h = 500km, i = 90°	Gap	Access	
1_	Mean (s)	2528.6	510.3	Mean (s)	4921.2	398.7	Mean (s)	6823.4	403.4	Mean (s)	8374.6	365.1	Mean (s)	9701.7	377.5	
볼	Max (s)	3204.6	566.6	Max (s)	25842.9	584.8	Max (s)	26050.6	580.0	Max (s)	31984.8	570.8	Max (s)	37043.6	552.3	
18	Req P/L Rate (bps)	19200		Req P/L Rate (bps)	19200		Req P/L Rate (bps)			Req P/L Rate (bps)	19200		Req P/L Rate (bps)	19200		
	Max P/L Rate (bps)	58000		Max P/L Rate (bps)	/lax P/L Rate (bps) 26000		Max P/L Rate (bps)	19400		Max P/L Rate (bps)	14600		Max P/L Rate (bps)			
	Req. Storage (MB)	25.63		Req. Storage (MB) 104.50		.50	Req. Storage (MB)	105.88		Req. Storage (MB)	161.00		Req. Storage (MB)	91.00		
	h = 600km, i = 0°	Gap	Access	h = 600km, i = 30°	Gap	Access	h = 600km, i = 42°	Gap	Access	h = 600km, i = 60°	Gap	Access	h = 600km, i = 90°	Gap	Access	
1_	Mean (s)	2653.0	588.1	Mean (s)	4170.2	414.4	Mean (s)	5765.4	414.8	Mean (s)	7290.7	404.6	Mean (s)	8435.5	401.9	
볼	Max (s)	3347.1	648.1	Max (s)	23049.7	663.1	Max (s)	26736.2	657.5	Max (s)	26835.6	646.7	Max (s)	29547.7	625.3	
009	Req P/L Rate (bps)	19200		19200 Req P/L Rate (bps)		00	Req P/L Rate (bps)			Req P/L Rate (bps)			Req P/L Rate (bps)			
	Max P/L Rate (bps)	62000		Max P/L Rate (bps)	31100		Max P/L Rate (bps)			, (1,		18100		, , , ,		800
	Req. Storage (MB)	28.13		Req. Storage (MB)	q. Storage (MB) 97.38		Req. Storage (MB)	92.63		Req. Storage (MB)	83.38		Req. Storage (MB)	96.	<i>75</i>	
	h = 700km, i = 0°	Gap	Access	h = 700km, i = 30°	Gap		h = 700km, i = 42°	Gap	Access	h = 700km, i = 60°	Gap	Access	h = 700km, i = 90°	Gap	Access	
٦	Mean (s)	2755.8	642.7	Mean (s)	4452.9	497.6	Mean (s)	6205.4	499.4	Mean (s)	7719.5	478.9	Mean (s)	8967.5	478.2	
볼	Max (s)	3463.1	702.1	Max (s)	20865.7		Max (s)	27392.3	709.2	Max (s)	30099.6		Max (s)	27540.7	673.9	
100 201	Req P/L Rate (bps)	19200		Req P/L Rate (bps)			Req P/L Rate (bps)	Rate (bps) 19200		Req P/L Rate (bps)	19200		. , , , ,		200	
	Max P/L Rate (bps)			Max P/L Rate (bps)			Max P/L Rate (bps)			Max P/L Rate (bps)			Max P/L Rate (bps)			
L	Req. Storage (MB)	eq. Storage (MB) 30.63		Req. Storage (MB)	B) 104.50		Req. Storage (MB)	102.50		Req. Storage (MB)	93.	88	Req. Storage (MB)	82.	75	

^{*} Req. P/L rate is the information rate output by the P/L assuming a constant 19.2kbps output rate from the P/L.

Assumptions:

MicroMAS Information Downlink Rate: 347kbps // Collection occurs during downlink time // NO COMPRESSION Analysis shown is for 30 day period // Link Constraint: Eb/No > 7.5 dB, Elevation > 5°

^{**}Max P/L (bps) is the maximum amount of payload data (information) per second that can be continuously sent to the bus and downlinked without interruption.

^{***}Req. Storage (MB) is the maximum amount of payload mission data that needs to be held for downlink at any given time assuming continuous payload operation @ the Max P/L Rate.

MIT Campus Ground Station

- Effort to refurbish S-band dish on MIT building 54
 - Led by EAPS (Sara Seager),
 AeroAstro (Kerri Cahoy)
 and MIT Radio Club
 - 42.359758, -71.093556

MIT Hack the day Hitchhikers Guide to the Galaxy came out: "Don't Panic"

Summary

- Open System of Agile Ground Stations
 - S-band
 - Increase data downlink from CubeSats
- Espace Payload Telemetry System
 - Fall 2012
- MIT Control Center; networked
- MIT Campus ground station refurbishment
- Contact:
 - fm@space.mit.edu (François Martel)
 - kcahoy@mit.edu

Acknowledgements

- MIT and MIT LL Microsized Microwave Atmospheric Satellite(MicroMAS) team
 - Especially IO, CC, and RK
- MIT Trapped Energetic Radiation Satellite (TERSat) team
- MIT Kavli Institute
- MIT and Aurora Flight Sciences Mothercube team

Related talks

- Anne Marinan
 - Ad-hoc CubeSat Constellations
 - 11:30 am Saturday, 8/11
- Emily Clements
 - Trapped Energetic Radiation Satellite PQR (TERSat)
 - 9:25 am Monday, 8/13
- Bill Blackwell
 - Nanosatellites for Earth Environmental Monitoring:
 The MicroMAS Project
 - 3:15 pm Monday, 8/13
- Emily Clements
 - Trapped Energetic Radiation Satellite
 - 8:30 am Wednesday, 8/15
- Come say hi and visit our TERSat Booth!

Backup Slides

Abstract

 The Open System of Agile Ground Stations (OSAGS) consists of 3 equatorial S-band ground stations located in Kwajalein, Cayenne, and Singapore. The new OSAGS is the result of updates in 2010—2011 to the previously existing HETE-2 (High Energy Transient Explorer) ground stations by Espace, Inc., and was supported by the NASA Small Business Innovation Research (SBIR) program. OSAGS operates in the space exploration and operation bands of 2.025—2.0120 GHz uplink and 2.20—2.30 GHz downlink. The 2.3 m OSAGS ground stations can support numerous missions, handling communications requirements up to 3.5 Mbits per second. The system is based on Software Defined Radio (SDR) and the three ground stations are remotely configurable via the internet from a secure portal located on campus at MIT. The Espace, Inc. Payload Telemetry System (PTS) currently consists of a CubeSat-sized Sband transceiver, with additional HF/VHF/UHF receive capability. The prototype PTS units have been developed, and the first flight PTS units are scheduled for delivery in August 2012. We discuss applications of both the PTS and OSAGS for CubeSat missions, as well as operational considerations.

Link Budget

Detailed link budget

	Micro	MAS Lin	k Budget	h=500 km	i = 42°		
				nlink	Upli		
<u>Item</u>	<u>Symbol</u>	<u>Units</u>	Worst Case	<u>Best Case</u>	Worst Case	<u>Best Case</u>	Comments
EIRP:	D	IDW	0.00	0.00	45.44	45.44	Louis and S prop I
Transmitter Power	-	dBW	0.00	0.00	15.44	15.44	0 dB is power output for Espace PTS Radio.
Transmitter Line Loss	Ц	dB	0.00	0.00	0.00	0.00	TBR: Attenuation and length of cable needed for accurate calculation (Assume negligible for now)
Transmit Antenna Gain (net)	Gt	dBi	1.00	7.40	31.68	31.68	TBR: Downlink transmit antenna gain is the requirement for onboard patch antennas. Antennas design is underway.
Equiv. Isotropic Radiated Power	EIRP	dBW	1.00	7.40	47.12	47.12	See SMAD eq. (13-5)
Receive Antenna Gain:							
-	f	Ghz	2.25	2.25	2.08	2.08	Downlink Frequency: 2.25 GHz, mid point of 2.2 - 2.3 GHz range of OSAGS ground stations.
Frequency							Uplink Frequency is 2.075 GHz. Mid point of 2.025 - 2.120 GHz for OSAGS ground stations.
Receive Antenna Diameter	D _r	m	2.30	2.30	0.05	0.05	2.3 m diatmeter for OSAGS from Espace-OSAGS-PTS-Slides-2-21-2012.pdf from Francois Martel.
Receive Antenna efficiency	ŋ	n/a	0.50	0.50	0.50	0.50	General Assumption
Receive Antenna Gain	G _r	dBi	31.68	31.68	6.00	-10.00	See SMAD eq. (13-18b)
Free Space Loss:							
Propagation Path Length	S	km	2,076.00	500.00	2,076.00	500.00	Based on Max Range from STK Analysis (Assuming a cutoff of Eb/No > 7.5, or Elevation > 5°)
Free Space Loss	L,	dB	-165.84	-153.47	-165.13	-152.77	See SMAD eg. (13-23b)
Transmission Path and Pointing Loss	ses:						
Transmit Antenna Pointing Loss	Lpt	dB	0.00	0.00	-1.00	0.00	Assume no antenna pointing loss on S/C since antenna is always nadir facing and does not point to the ground station.
Receive Antenna Pointing Loss	Lor	dB	-0.50	-0.50	-0.50	0.00	Assumed based on conversations with OSAGS engineer.
							Best: Assumed 0 to match STK simulation. Worst: Based on 3 years of atmospheric attenuation research prior to CASTOR program (CASTOR
Ionospheric Loss	L _{ion}	dB	-1.00	0.00	-1.00	0.00	link budget)
Atmospheric Loss (H2O and O2 losses)	L _{atmo}	dB	-0.34	-0.34	-0.34	-0.34	Based on 3 years of atmospheric attenuation research prior to CASTOR program (CASTOR link budget)
Loss due to Rain	L _{rain}	dB	-2.00	-0.01	-2.00	-0.01	Based on 3 years of atmospheric attenuation research prior to CASTOR program (CASTOR link budget)
Demodulator Loss	L _{dmd}	dB	-0.15	0.00	-0.15	0.00	"derived from generic communication knowledge" (CASTOR link budget). TBR - Plan to Close loop with PTS Designer
Splitter Loss	L _{spl}	dB	0.00	0.00	0.00	0.00	Current MicroMAS design uses two patch antennas, one for uplink and one for downlink.
Implementation Loss	эрг	dB	-0.50	0.00	-2.00	-0.50	Best: Assumed 0, Worst: Assumed -2dB for OSAGS, -0.5dB for MicroMAS
Total Additional Losses		dB	-4.49	-0.85	-6.99	-0.85	Contributing of World Parameter Lab for Control of Cont
Total Fladicional Ecosos		u.b		0.00	0.55	0,00	
Data Rate:							
D-1- D-1-	R	L.	604 444 00	604 444 00	25 600 00	25,600.00	Espace PTS max downlink data rate is 1 Mbps. Max uplink frequency is 0.1 Mbps.
Data Rate	K	bps	694,444.00	694,444.00	25,600.00	25,600.00	Original data downlink calculations were done with 115,200 bps, but MicroMAS will need as high a data rate as possible
Data Rate	10 log(R)	dBbps	58.42	58.42	44.08	44.08	
		•					
Boltzman's Constant:							
Boltzman's Constant	10 log(k)	dBW/(Hz*K)	-228.60	-228.60	-228.60	-228.60	
System Noise Temperature:							
Antenna Noise Temperature	T _{ant}	K	290.00	290.00	340.00	340.00	
,							Conservative Estimate Uplink: per Alessandra's suggestions (290K from Earth + 50K from Cosmic Background = 340K)
Receiver Noise Temperature	T _r	K	0.00	0.00	0.00	0.00	
System Noise Temperature	T _s	K	290.00	290.00	340.00	340.00	Conservative Estimate
System Noise Temperature	10 log(T _s)	dBK	24.62	24.62	25.31	25.31	Conservative Estimate
E _b /N _o		dB	7.91	30.31	40.20	42.70	See SMAD eg. (13-14)
							Required for BER = 10.5. An Eb/No of 7.5 will yield a BER = 10.5. This assumes no coding gain. Once we take credit for the coding gain, the
E _b /N _o required		dB	7.50	7.50	7.50	7.50	numbers should get better.
Margin		dB	0.41	22.81	32.70	35.20	Looking for a value greater than or equal to 3dB, which we achieve once we take credit for the coding gain of approx 5.5dB (not shown here).

STK Link Budget Parameters

- Baseline Scenario Assumptions
 - -h = 500km, T = 94.8 minutes
 - $-i = 42^{\circ}$
 - Scenario Time Period: 30 Days
- Rain Model: ITU-R P618-9
 - Rain Outage: 0.1%
 - Surface Temp: 24 ° C
- Atmospheric Absorption Model
 - Water Vapor: 7.5g/m3
 - Surface Temp: 24 ° C

30 Day Ground Trace

