

AeroCube 3

David A. Hinkley

Technology and Laboratory Operations The Aerospace Corporation

© The Aerospace Corporation 2012

Aerospace PICOSAT Program Value

 Perform Missions - two types: High risk for maximum return Use latest technology Create capability roadmap Risk reduction for sponsor's main program We have rapid response We are payload centric We allow fluid requirements We resolve technical questions 	 Develop Technology by: Sustained internally funded effort Constant pursuit of limits Resident quality workforce Appropriate corporate structure
 Develop Workforce by Providing: Engineering exercise Policy exercise Contractor-like experience Program leadership opportunities 	 Support AF Acquisitions by Developing: Cost models Concept Design Center models Mission assurance guidelines

Т

Aerospace's "PICOSAT" History* from 1999 to 2012

* Timeline is for delivery date and not launch date

4/22

AeroCube-2

- Launched May 2009
- 98° inclination
- 650 x 770 km altitude
- 1U CubeSat form factor
- 1 kg mass
- Norad ID 31133
- (Still in orbit)
- 4 solar cells total
- Tumbler no attitude control

Cal Poly CubeSat CP-4 photographed by AeroCube-2. The first and, so far, only instance of one CubeSat photographing another.

Lasted 1 day only because of insufficient energy for recharging batteries

AeroCube-3

- Launched May 2009
- 40.5° inclination
- 460 km altitude
- 1U CubeSat form factor
- 1.1 kg mass
- Norad ID 35005
- Reentered
- 7 solar cells total
- Permanent magnet*

Pacific Ocean

Central Mexico

Corrected and improved AeroCube-2

AeroCube-3 Features

** 200' of Dyneema is spooled inside

Substantial number of new subsystems

AeroCube-3 New Solar Cell Laydown Method

- Testing a new method for solar cell installation
- Nusil CV4 is a double sided tape with space rated outgassing properties
- 1U CubeSat solar cells laid down in 1 day

Reference: Karuza, et al, "Solar Cell Installation Using Double Sided Polysiloxane Pressure Sensitive Adhesive (PSA) Polyimide Film," 2009

Much quicker and cleaner than liquid adhesive

7 / 22

AeroCube-3 Concept of Operations

Mission = test new sensors, comm link, power system, deorbit device

2700 mile diameter of cloud cover (same size as the United States!)

Approaching the California Coast

Intelligence, Surveillance, and Reconnaissance

Day / night terminator

New Harmony fire (Utah)

Station fire (Los Angeles)

Locating gigantic fires! (September 1, 2009)

AeroCube-3 Deorbit Balloon

Uninflated 2-foot diameter AC3 balloon. Kapton fill tube has kinks that prevented inflation.

6 panel x 2-foot diameter AC3 balloon inflated in vacuum chamber

AC3 balloon inflation module

Spherical balloon would be easy to spot from earth with binoculars

AeroCube-3 Deorbit Balloon Performance

All three CubeSats were launched from the same P-POD launch tube

AeroCube-3 Deorbit Balloon Performance

Balloon deployed (uninflated due to fault in inflation system) on 11-18-09

10/22

AeroCube-3 Solar Up-converter Voltages - Baseline

Lithium ion batteries charge at 4.2V

AeroCube-3 Solar Up-converter at 0 and 60 days

-Yellow / Blue / Pink lines are solar array upconverted voltages

No change in solar array performance in 60 days

AEROSPACE

AeroCube-3 Temperatures at 0 and 60 days

- Blue / Pink lines are temperature sensors located on 2 different exterior walls of AeroCube-3
- Yellow / Black / Purple lines are temperature sensors located on the electronics module

Note that interior temperatures do not fluctuate as much by design

AeroCube-3 Battery Data at 0 and 60 days

Blue / Yellow lines are Battery 1 and Battery 2 voltages (V)
Cyan / Pink lines are Battery 1 and Battery 2 currents (mA)

No change in battery performance in 60 days

AeroCube-4 Preview

- Launch August 2012
- 60° inclination
- 470 x 780 km altitude
- 1U CubeSat form factor
- 1.3 kg mass
- 10 solar cells total
- Full attitude control
- Sun sensors
- Earth nadir sensor
- 1600x1200 cameras
- Adjustable wings for variable drag
- 2 ft dia x 1.5ft tall conical deorbit chute
- GPS
- Redundant radios
- Redundant software
- Reprogrammable on orbit
- Triax reaction wheels
- Triax torque coils

Vast improvement in capability over AeroCube-3

Acknowledgements

Dr. James Gee, Principal Director, Developmental Planning and Projects, The Aerospace Corporation

This work was supported by The Aerospace Corporation's Independent Research and Development program.

