Summary

- ESPA 6U Mount (SUM) overview
- SUM qualification status
- Future SUM enhancements
- Moog CSA adapters and ESPA family

ESPA Six-U Mount – SUM

- Adapter with ESPA standard interface for CubeSat launch
 - Compatible with standard ESPA port interface, Athena II Rideshare Adapter, CubeStack, Atlas V Aft Bulkhead Carrier
 - Prototype developed 2009
- Mounts two PPODs or one 6U dispenser
 - Inboard or outboard mounting on ESPA port
 - Inboard mount shares port with exterior mounted ESPA-sat
- Enables increased capacity for ESPA
 - Six 400-lb satellites and twelve 3U satellites

ESPA SUM Status

- Stiffness driven design complete
 - 1st mode at 150 Hz to minimize launch dynamics
 - Predictions with maximum weight CubeSats
- August 3 Critical Design Review
- Manufacturing in progress
- Qualification program for NASA Launch Services Program
 - Environment requirements for ESPA payloads defined in Rideshare User's Guide (RUG)
 - Testing in October

ESPA Inboard and Outboard Mounting

- SUM mounts CubeSats internally or externally on ESPA
 - Inboard configuration utilizes ESPA interior
 - Outboard configuration mounts to port

SUM with CubeSat Dispensers

PSC 6U Dispenser

Cal Poly PPODs

CSA Engineering

Dispensers Mounted in ESPA with SUM

Inboard Configuration Vibration Modes

First structural mode for inboard configuration is 159 Hz
Mode shape deformations are greatly exaggerated

Mode 1: 159 Hz

Mode 2: 171

Mode 3: 257 Hz

Outboard Configuration Vibration Modes

First structural mode for outboard configuration is 205 Hz Mode shape deformations are greatly exaggerated

Mode 1: 205 Hz

Mode 2: 206 Hz

Mode 3: 318 Hz

Strength Analysis

- Analysis performed with maximum weight CubeSat simulators inside PPOD models
- Static analysis with ESPA Rideshare User's Guide (RUG) quasi-static load factors
 - 8.5g in thrust axis and 8.5g lateral
 - No-test factor of safety = 2.0
- Random vibration analysis with RUG maximum predicted environment + 3 dB (16.2 grms)
 - Crest factor of 3.0 applied to stress RMS levels to predict peak
 Von Mises stresses
 - 2% critical damping used for analysis
 - Test safety factors: $FS_v = 1.25$; $FS_u = 1.4$
- All stress margins positive due to RUG loads

6U dispenser stiffens SUM in this region

RUG Static Loads Analysis

- Two static load environments applied to SUM with two P-PODs
 - -8.5g in Y direction and 8.5g in Z direction
 - -8.5g in Y direction and 8.5g in X direction
- Body loads applied in Nastran
 - GRAV feature with appropriate scale factors

RUG Random Vibration Protoflight Profile

Vibration spectrum for analysis and demonstration test

Planned SUM Enhancements

- ESPA 24" port version, 12U capability
- Compatibility with NASA Ames and NASA GSFC/Wallops dispensers
- SoftRide interface for loads mitigation

Moog CSA Payload Adapters

ESPA

Flat Adapter

CubeStack

LCROSS ESPA

DSX ESPA

ESPA as Bus: LCROSS

ESPA Grande 42

SepESPA Saab

ESPA Variations

ESPA with secondary payloads and propulsion system

CubeSat Deployment Sequencer

- Moog IRAD multi-payload sequencer
 - Modular architecture
 - Compatible with PPOD, PSC, SNC, RUAG systems
- Moog IRAD multi-payload sequencer
 - Modular architecture
 - Compatible with PPOD, PSC,

- Prototype at Moog Small Satellite exhibit
- In progress
 - Circuit and code development
 - Battery testing
- Prototype at Moog Small

lacktriangle

Next

Athena Commercial Rideshare

- Athena IIc annual launches for small satellites
 - STPSat3 Feasibility Assessment completed for DoD Space Test Program
- Moog CSA payload accommodations
 - Modular multi-payload adapter
 - 4-9 rideshare satellites, 110-440 kg spacecraft
 - Options for CubeSats and heavier spacecraft
 - SoftRide isolation of adapter and payloads
 - Reduced launch environments
 - Vehicle has similar dynamics with various payload stacks
 - Coupled loads analysis for environment predictions
- Athena Rideshare Users Meeting 10am Monday Aug 13 Eccles Science Learning Center RM 046

CubeStack

- CubeSat adapter by LoadPath and Moog CSA
 - AFRL Space Vehicles Directorate contract
- Satellites in 10-inch "wafer" between payload interface and primary
 - Primary interfaces at 24 and 38.8 inches
 - Eight 3U dispensers or combinations of 3U and 6Us
- Qualification program complete
 - Flight units available
- Two flight structures ready for delivery
 - Manifested on ORS 3 launch 3rd quarter 2013
- Second generation CubeStack design
 - Bulkhead configuration eliminates lower deck
 - Weight reduced by 15%-20%
 - Improved access for integration
- CubeStack propulsion module

8-PPOD configuration

Conclusion

- SUM is one of several new adapters developed for or compatible with CubeSats
- SUM Critical Design Review complete, proceeding into manufacturing
- SUM flight units available 2012

