
5

ISIS – Innovative Solutions In Space

Don’t Worry, We’ll Fix it in Software

Maxime Castéra

CS Summer Workshop – Logan USA 08/2012

Summary

•  The software Myths
•  The software project cycle
•  The flight software
•  The embedded stack
•  Sw / Hw interaction phases
•  Subsystems VS Systems testing
•  Pitfalls to be avoided
•  Conclusion

Software Myths

•  Flexibility of the software
•  Software effort estimation
•  Re-usability
•  Maturity / Testing of the software
•  Bug fixing
•  Fixing everything ‘later’ in software

The software project cycle

The software project cycle

-  Flow-down software and hardware
requirements from the mission requirements
=> Not the opposite.

-  Involve the software team early on in the

mission definition.

-  Plan testing early enough.

-  Document every step.

The flight software

•  On-board Computer
–  Definition of the databus
–  Overall satellite operational modes
–  Flight scheduling
–  Command and Data Handling

•  ADCS Computer
–  Sensors reading
–  Actuators commanding
–  Attitude determination algorithms

•  Local intelligence of the subsystems
–  Housekeeping data collection
–  Command handling

The embedded stack

OBC Hardware

Hardware Abstraction Layer (HAL)

ISIS Library

Antenna
Systems TRXUV

Custom flight software

EPS

IMTQ

CDHS Control
Software P/L specific

Flight scheduler

Sw / Hw interaction phases

•  Stubbing phase
–  When hardware not available
–  I/F being defined

•  Development board phase
–  When hardware not finalized or fully defined
–  I/F still open

•  Breadboard phase
–  When hardware characterized and under-test
–  I/F frozen

•  EM phase
–  When hardware on the table

Subsystems VS Systems testing

•  Subsystems testing
–  Unit testing on embedded systems

–  Regression testing

•  System testing
–  Flat sat setup
–  Hardware stubbing
–  Full stack testing

•  E2E testing
–  Gaining uptime
–  Full chain testing

Pitfalls to avoid

•  Involving software people too late.
•  Involving software people too early.
•  Underestimating the need for mission

specific knowledge.
•  Cutting corners on software testing.
•  Excessively re-using old software.
•  Changing databus philosophy late in the

project.
•  Assuming that writing flight software is the

same as regular software development.
•  Forgetting that your code will be in space.

Conclusion

•  Software can’t fix everything
•  Proper interfaces are everything
•  Involvement of the team is critical
•  Educate the software team
•  Let the software team educate you

•  An untested software is nothing else
than a project risk

Maxime Castera – m.castera@isispace.nl - www.isispace.nl - www.cubesatshop.com

