

DRD

COM DE

Caractan Ackanced Nanost

The CanX-7 Drag Sail Mission

A cubesat for demonstrating a small-satellite compatible deorbiting device

Presented to the 2012 Summer CubeSat Developer's Workshop

Jesse Hiemstra, Barbara Shmuel, Fiona Singarayar, Vincent Tarantini, Brad Cotten, Bryan Johnston-Lemke, Grant Bonin, Dr. Robert E. Zee

August 2012

The Space Debris Problem

Monthly Number of Objects in Earth Orbit by Object Type

Source: Orbital Debris Quarterly News, vol. 361, no. 1802, 15-Jan-2011

The Problem for Small Satellites

- Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines (2007)
 - Two protected regions (LEO, GEO).
 - LEO guidelines: deorbit within 25 years from end of mission.
- Not the law (yet)...
 - Canadian Department of Foreign Affairs and International Trade (DFAIT), Industry Canada (IC) require debris plan as pre-requisite for communications licenses.
 - Significant issue for Canadian satellites, particularly small, responsive missions.

Deorbiting Devices for Small Satellites

- Propulsion systems
- (Active) solar sails
- Electrodynamic tethers
- Passive drag devices: Ribbons, balloons, sails

Image credit: http://www.gaerospace.com/projects/GOLD/index.html

Image credit: http://www.nasa.gov/mission_pages/ smallsats/nsd_bluesail.html

Image credit: http://www.tethers.com/ papers/TTReno00.pdf

Terminator Tether™ Deployer, Electronics, and Electron Emitter

CanX-7 Mission Objectives

- Demonstrate a drag sail deorbiting device on a 3U as well as 20 cm edge-length platform, capable of being **adapted** to
 - passively deorbit a 15 kg reference spacecraft,
 - from an 800 km circular polar orbit,
 - within 25 years.
- Operate a secondary payload for 6 months, then deploy drag sail.

Lifetime Analysis Method

- What is the deorbit lifetime?
- Using the Satellite Tool Kit (STK) software lifetime tool, determine the deorbit lifetime of a spacecraft with a fixed drag coefficient and constant ram area.

Lifetime Analysis Method

Selected drag coefficient appears conservative.

Lifetime Analysis Method

 Results using most atmospheric models agree, but...

Atmosphere Model

Lifetime Analysis Method

• Solar activity affects atmospheric density, and solar cycle variation is difficult to predict.

Histogram showing distribution of de-orbit lifetimes from 800 km using NRLMSISE-2000 atmospheric model for various predictions of solar activity. (Ballistic coefficient $C\downarrow B = 3.75 \text{ kg/m}^2$.)

Lifetime Analysis Method

• Deployment date affects deorbit life.

Lifetime Analysis Results

Effective ram area requirement is set at 2.0 m².

Attitude Analysis Method

- What size of sail is needed to achieve a given effective area?
- Conversely, what is the effective area of a given spacecraft and sail?

Attitude Analysis Method

- Furthermore, the deorbit device must work over a range of orbits and spacecraft configurations.
 - Inclination restricted to 80° -100° (i.e., polar / sunsynchronous).
 - Local Time of Ascending Node (LTAN) free.
 - Altitude free.
 - Magnetic dipole moment restricted.

Attitude Analysis Method

 \rightarrow Parametric Study: Simulate the attitude dynamics, while...

- Holding altitude constant
- Varying other orbital parameters
- Varying the atmospheric density through a range equivalent to one solar cycle
- Varying the magnetic configuration (dipole moment magnitude and direction)

... Then determine the resulting effective area.

x 10⁻¹

Analysis Results

10 Time [orbits]

Disturbance Torques [Nm]

8 10 12 Net Disturbance Torque

10 12

Geomagnetic

10 12

16

Pitch

Canadian Advanced Nanospace eXperiment 7 - CanX-7

22 August 2012

Preliminary Attitude Analysis Results (example)

8 10 12 Attitude - 3-2-1, Pitch-Roll-Yaw

6 8 10 Time [orbits] Pitch 20

Roll Pitch

22 August 2012

Preliminary Attitude Analysis Results (example)

Input: Disturbance torques Disturbance Torques (Nm × 10 10 12 16 18 14 Net Disturbance Torque manananananananananananananana 10 12 Gravity Gradient § ANA 10 Geomagnetic

Output: Spacecraft attitude

Result: Figures of merit Normalized Sunward Alignment 0.5 Solar radiation pressure stabilized -0.5 2 8 10 12 0 6 14 16 18 Time [orbits] 0.8 Normalized Projected Area 0.6 Low projected area 0.4 0.2 0 0 2 8 10 12 14 16 18 Δ 6 Time [orbits]

22 August 2012

20

20

Preliminary Deorbit Analysis Results

Figure of Merit: Effective Area Specifically: Dwell-timeweighted average settled projected area, throughout the atmospheric density range equivalent to a whole solar cycle

Preliminary Deorbit Analysis Results

Figure of Merit: Effective Area Specifically: Dwell-timeweighted average settled projected area, throughout the atmospheric density range equivalent to a whole solar cycle

Preliminary Deorbit Analysis Results

 Sail area requirement set at 4.0 m² to achieve 2.0 m² effective area for most 800 km starting orbits.

CanX-7 Spacecraft

Basic Spacecraft Functional Requirements

- Accommodate primary payload: Deorbit system.
- Conform to limitations imposed on sail area, magnetic dipole moment, etc. determined from deorbit analysis.
- Accommodate secondary payload, including specific provisions for attitude control.
- Survive and operate in the space environment (leads to power, communications, command & data handling, and thermal requirements).

CanX-7 Spacecraft

CanX-7 Spacecraft

Secondary Payload

- COM DEV Automatic
 Dependent Surveillance
 Broadcast (ADS-B)
 receiver
- ADS-B GPS position broadcasts are more accurate than radar. Widespread adoption by 2020.

Secondary Payload

- Like radar, ADS-B range is limited by lineof sight.
- Orbital receivers can enable tracking of aircraft over oceans, eliminating the need for slotting aircraft into routes along waypoints.

Attitude Control System

Communications System

Command and Data Handling System

Housekeeping computer

Power System

Modular Power System

- 1-1000 W Throughput
- Deployed on Canadian Space Agency's Mars Exploration Science terrestrial rover (MESR).
- Planned for use on NEMO-HD microsatellite
- First planned spaceflight will be on CanX-7

Modular Power System

- For a new spacecraft design...
 - Select power system components as needed.
 - Test in-development hardware (payloads, new systems) using *already-built* power system components.
 - Construct a power system from existing designs and hardware, with less custom hardware.

Modular Power System

22 August 2012

Deorbit System

Deorbit System

Deorbit System Functional Requirements

- Compatible with 3U and Space Flight Laboratory's (UTIAS-SFL) Generic Nanosatellite Bus (GNB) spacecraft
- Modular, bolt-on solution
- Scalable by the addition of modules
- Capable of repeated deployment (for testing)

Sail Mounting

Sail Mounting

Example of Generic Nanosatellite Bus (GNB) Spacecraft: BRITE Mission

22 August 2012

Sail Mounting

 Conceptual mounting on Generic Nanosatellite Bus (GNB):

Sail Mounting

 Conceptual mounting options on Nanosatellite for Earth Observation and Monitoring (NEMO) bus:

Mechanical Design

Preliminary Design

Mechanical Design

• Third Generation Prototype

Mechanical Design

Prototype Deployment Testing

Mechanical Design

Prototype Deployment Testing

22 August 2012

CanX-7 Review

- Modular deorbit device Currently in detailed design phase.
- ADS-B secondary payload Potentially one of the first demonstrations on-orbit.
- Modular power system First planned spaceflight for this new system.

Acknowledgements and Questions

