



# A Stellar Gyroscope for CubeSat Attitude Determination

Samir A. Rawashdeh and James E. Lumpp, Jr. Space Systems Laboratory University of Kentucky

James Barrington-Brown and Massimiliano Pastena SSBV Space & Ground Systems UK

2012 Summer CubeSat Developers' Workshop

August 11-12, 2012



## **Presentation Overview**

- Stellar Gyroscope Concept
- Motivation
  - CubeSat ADCS
  - Attitude knowledge in eclipse
- How the Stellar Gyroscope Works
- Flight Experiment

## Concept of Stellar Gyroscope



Observe the motion of stars in camera's field of view to infer changes in satellite's attitude.



- Measures relative attitude between exposures with common stars
- Tolerates large amount of noise, allowing low cost assembly and small form factor

# CubeSat Attitude Determination Challenge

In Sun Light
Magnetic Field Vector
Sun vector
Earth Sensor
Star Tracker: needs baffle

August 11-12, 2012

<u>In Eclipse</u>

Magnetic Field Vector
 No Sun Vector

Earth not lit for Earth
 Sensor

🔹 Star Tracker

Rate Gyroscope integration with drift

SSBV CubeSat Solution: Sun: Sun Sensors & Magnetometer + GPS Eclipse: MEMS Gyros + **Stellar Gyro** 

## Motivation - Alternatives for Eclipse

- Attitude measurement challenging (Earth sensor in InfraRed, Star Tracker)
- Laser Ring Gyros: Highly accurate, Large, Expensive

Summer CubeSat Developers' Workshop

- MEMS Gyroscopes:
  - Compact, and Affordable
  - Small Satellites almost exclusively use MEMS
  - Noisy: drift ~0.5 degrees per minute
- Image-based Approach (stellar gyro):
  - Comparable volume and cost
  - Added computational requirements
  - Can assist MEMS gyros by limiting drift





5/18





## ADCS System

- In Sun light:
  - Magnetometer, with magnetic model and GPS position knowledge
  - Sun Sensors, using Position Sensitive Detector (not photodiodes)
- In Eclipse:
  - MEMS inertial gyroscopes
  - Assisted by stellar gyroscope to reset drift



Inertial Gyros

## **Camera Specifications**

- CMOS Sensor with S-Mount Lens
- Designed to capture Star Magnitude 4 and brighter
- At least 3 stars in Field of View in 99% of the sky.

| Parameter     | Value                                                     |
|---------------|-----------------------------------------------------------|
| Sensor        | OmniVision OV7725<br>CMOSVGA Sensor<br>(640 x 480 pixels) |
| Optics        | 6 mm focal length,<br>Aperture F/2.0                      |
| Field of View | 27.6° by 36.7°                                            |
| Sensitivity   | 3.8 V/(Lux · s)                                           |
| S/N Ratio     | 50 dB                                                     |
| Dark Current  | 40 mV/s                                                   |
| Pixel Size    | 6 x 6 µm                                                  |





Camera assembly as experiment on TDS-1. Further miniaturization is possible.



## Star Detection

"Centroiding", aka Expected Value





## Camera Model

- Camera Calibration to characterize:
  - Principal Point
  - Focal Length
  - Lens Radial and Tangential Distortion
- Used to acquire precise star vectors





Camera Calibration Toolbox – by Jean-Yves Bouguet http://www.vision.caltech.edu/bouguetj/calib\_doc/

400

200

#### 9/18

200

0

-100

-200

Using the Direction-Cosine-Matrix (DCM) notation, the attitude change between two frames satisfies:

$$\overrightarrow{\mathbf{v}^{b}} = C^{ba} \overrightarrow{\mathbf{v}^{a}}$$

- The goal is to find the rotation matrix (C<sup>ba</sup>) that defines the rotation between frame a and frame b.
- Given at least two vector measurements (two stars before-and-after), The Q-Method is used to find the analytically optimal relative attitude estimate.



## Correspondence Across Frames

- False-positives: noise
- False-negatives: missed stars
- Entering and Leaving FOV.
- Correspondence Problem: identifying the same star across frames.
  - By brightness: highly susceptible to noise
  - By predicted location: susceptible to unexpected maneuvers and to false-stars and missed stars



Overlaid detected stars in 5 images that are 3 degrees apart

## Random Sample Consensus (RANSAC)



- RANSAC: iterative method to estimate parameters of a mathematical model from a set of observed data which is contaminated a large number of outliers that do not fit the model.
- The steps of RANSAC can be summarized as
  - Hypothesize: A hypothesis rotation is based on MEMS rate information, or calculated using randomly selected star pairs across frames.
  - **Test:** The estimated rotation matrix is tested against all the stars in the two frames. Stars that show consensus are counted towards the Consensus Set (CS).
  - Iterate: RANSAC iterates between the above two steps until a random hypothesis finds "enough" consensus to some selected threshold.

## **RANSAC** Performance

- Observe Motion of Earth
- I degree every 4 minutes
- Photos of the night sky at 0.25° increments, pointing arbitrarily up.
- Prototype Hardware

Rotation Estimate =  $1.4495^{\circ}$ , Actual Rotation =  $1.5^{\circ}$ 



 Photos of the night sky using Spin Table

Angle Estimate = 25.0549°, Actual = 24.960975°

Canon GI0



August 11-12, 2012



# Attitude Response in Eclipse: MEMS only



- Assuming perfect attitude knowledge before entering eclipse
- MEMS rate gyro: 50Hz, ±80 °/second, 12-bit ADC, Noise 0.1
   °/second RMS
- Attitude knowledge error increases up to 5° in the first
   5 minutes and more than 10° after 35 minutes.





## MEMS assisted by Stellar Gyroscope

- Assuming perfect attitude knowledge before entering eclipse
- Stellar gyro generates attitude estimates (σ = 0.1°), at 15 second increments, relative to the first photo taken at the beginning of eclipse.
- Drift is maintained below 1°





### TechDemoSat-I

- Surrey Satellite Technology LTD, UK. Around 1-meter cubed, 150 kg.
- No less than 8 technology demonstration payloads Maritime Suite, Space Environment Suite, Air and Land Monitoring Suite, Platform Technology Suite
- TDS-I will test CubeSat ACS payload developed by SSBV Space and Ground Systems UK
- KySat-2 (Kentucky Satellite-2)
  - Kentucky Space Consortium
  - I-Unit CubeSat
  - Improved refight of KySat-I mission objectives



- Stellar Gyroscope finds relative attitude by tracking stars
- Correspondence (using RANSAC) can be done with large levels of noise, enabling implementation with low cost sensors and optics
- SSBV CubeSat ADCS system is designed to maintain high quality attitude knowledge throughout the orbit
- In Eclipse, it uses a Stellar Gyroscope to reset the drift of a MEMS attitude propagator.

## Thank You

## Samir Rawashdeh

Space Systems Laboratory Electrical & Computer Engineering University of Kentucky sar@ieee.org





