Spacer Development and Analysis

Polar Orbiting Passive Atmospheric Calibration Spheres [POPACS]

Tim Wilwert – Frank Arute – Kelly Collett August 11, 2012

Mission Overview

POPACS MISSION

 To measure changes in the density of the auroral zone upper atmosphere in response to various solar stimuli

DREXEL OBJECTIVE

 To design and manufacture a spacer assembly used to support and deploy the spheres

Drexel Space Systems Lab

- Drexel University, Philadelphia, PA
- Started in September 2009
- Part of Mechanical Engineering and Mechanics Department
- Projects include:
 - DragonSat-1 CubeSat
 - RockSat-C Program
 - High Altitude Balloon
 - Graduate Research

Introduction

- Project spearheaded by Gil Moore, POPACS Project Director
- Collaborative effort amongst many entities including Drexel University Space Systems Lab (DSSL) and Planetary Systems Corporation (PSC)
 - PSC will provide deployment mechanism
 3 Unit Canisterized Satellite Dispenser (CSD)
 - DSSL to design spacer structure

Introduction

- Solar Maximum 24 begins early next year
 - 3 years worth of heightened activity
 - Will lead to an increase in particulate matter in upper auroral atmosphere

CME from Sunspot 1429

March 8, 11:38 PM EST to March 9, 12:53 AM EST

Credit: SOHO/ESA & NASA

Introduction

- 3 spheres of 10 cm diameter and different masses will be deployed into highly elliptical orbit
 - 1, 1.5, 2 kg
 - Variations in atmospheric density will change orbit characteristics
 - Understanding these changes will lead to better understanding of upper atmosphere
- Near Polar Orbit
 - 80 degree inclination
 - 325/1500km

Mission Statement

- Assembly must be designed to PSC 3U CSD dimensions and specifications
 - Treat as dynamic envelope
- Manufacturing
 - Gil to make final spheres, also to be used for testing
 - Drexel team to design spacers

6 U CSD designed by PSC.

Main Challenges

- Low mass
- Stay within volume constraints
- Must cradle the spheres firmly enough to withstand launch conditions but gently enough to not damage the sphere surface
- Manufacturability
- Rigidity of structure

Mission Requirements

Number	Requirement
MIS-REQ-1000	Delivered to launch service by 4th Qtr 2012
MIS-REQ-2000	Shall abide by PSC 3U Payload Specifications
MIS-REQ-3000	Spacers shall minimize motion of spheres while stowed in launcher
MIS-REQ-4000	Spacers shall be able to deploy three spherical structures upon command
MIS-REQ-5000	Spacers shall not interfere with path of spheres
MIS-REQ-6000	Orbital debris shall be minimized
MIS-REQ-7000	Shall pass all pre-launch testing

System Requirements

Number	Requirement
SYS-REQ-2010	Spheres shall be made out of 6061 T-6 aluminum
SYS-REQ-2020	Mass of total system ≤ 6 kg
SYS-REQ-2030	Masses of 3 Spheres = 2.0kg, 1.5kg, 1.0kg ± 0.1kg
SYS-REQ-2040	Sphere Diameter = 10cm ± 0.013cm
SYS-REQ-2050	Sphere Center of Mass Variation = Center ± 0.0025cm
SYS-REQ-2060	Sphere Surface Smoothness = Ra < 1
SYS-REQ-2070	Sphere External Surface Treatment
SYS-REQ-2080	Sphere hemispheres shall be detachable
SYS-REQ-2090	Spacers shall have full tab contact
SYS-REQ-2100	No sharp edges

System Requirements

Number	Requirement
SYS-REQ-3010	Spacers shall withstand effects of vibrational forces on spheres
SYS-REQ-3020	Spacers shall withstand effects of acceleration forces on spheres
SYS-REQ-4010	Spacers shall not damage surface treatment
SYS-REQ-4020	Spheres shall not touch any part of PSC's deployment mechanism or each other
SYS-REQ-6010	Back spacer shall remain behind
SYS-REQ-6020	Spacers shall de-orbit as soon as possible
SYS-REQ-7010	Thermal vacuum testing (8 cycles from -34°C to +80°C at pressure less than 10-4 torr)
SYS-REQ-7020	Vibrational testing: Default MIL-STD 1540 (14.1Grms in each of three mutually orthogonal axes, non-simultaneous)
SYS-REQ-7030	Quasi-static acceleration testing (50g in each of three mutually orthogonal axes, non-simultaneous)

Solutions to Main Challenges

Challenge	Solution
Mass	Make cuts in spacer frame where possible
Stay within volume constraints	Created a dynamic envelop to allow for small displacement
Firm but gentle on spheres	Incorporated a viton o-ring and delrin-tipped spring plungers
Manufacturability	Did not over complicated features of spacers
Rigidity of frame	Stay within dynamic envelop – not allow sphere to come into contact with other components

Concept Design Decisions

- Spring plunger
 - ensure the sphere separates from o-ring
 - Position them close to o-ring
- Viton o-ring
 - Needed the o-ring to be positioned correctly on the sphere to prevent rubbing against the spacer
- Spacer mass reduction cut outs
 - Shed extra mass without compromising shear strength using x style cut outs

Concept

- Lightweight spacer
 - Use Viton o-ring to ensure sphere surfaces are not scratched
 - Incorporate acetal tipped spring plungers so spheres can exit the spacers without getting stuck to the o-ring
 - Spacer frame cut outs

Concept Model

Assembly

Top/Bottom Spacer

Mid Spacer

Primary Model Test

X Direction

Actual Mass = 5794.53g Y Direction

Result Force = 58.602NTheo. Mass = 5973.7 g

Result Force = -57.912N Theo. Mass = 5903.4 g

Assumptions:

- •Tabs were fixed
- •Connections were contact sets

Solid mesh type

Stress Analysis

•80g Load in X, Y, and Z Axis

Max Stress: 29.4 ksi

Max Stress: 28.0 ksi

Max Stress: 12.4 ksi

6061 T-6 Aluminum Max Stress: 45.0 ksi

Testing Plan

- Testing to be done at PSC in September
 - Thermal vacuum
 - Vibration
 - Quasi-static loading
- MicroGrav
 - Looking to purchase a flight

Concurrent Effort

- Modeling in STK
 - Determination of spacer orbit life (if applicable)
 - Determination of sphere / spacer interference
- Deployment
 - Test deployment from CSD
- Orbital Debris
 - De-orbit quickly and burn up during re-entry

Conclusion

- Gil is coordinating a launch
- Testing is needed before the Solar Max
- Will be on display at SmallSat!

Please feel free to email us with additional questions!

- Tim Wilwert tjw44@drexel.edu