

U.S. AIR FORCE

Peregrine: A deployable solar imaging **CubeSat mission**

United States Air Force Academy

20 April 2012 CubeSat Workshop

Air Force Academy

U.S. Air Force Academy Colorado Springs Colorado, USA

2,100 m (MSL) 18,000 acres (73 km²)

~4,400 cadets 700+ faculty

Pillars -Academics -Military -Athletics -Character and Honor

CADET HONOR CODE We will not lie, steal or cheat, nor tolerate among us anyone who does. Furthermore, I resolve to do my duty and to live honorably, so help me God.

Air Force Academy Mission & Vision

MISSION STATEMENT

To educate, train, and inspire men and women to become officers of character, motivated to lead the United States Air Force in service to our nation

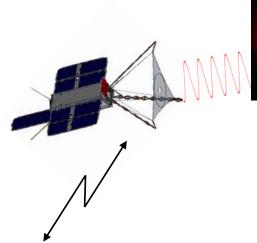
VISION STATEMENT

The United States Air Force Academy ...

the Air Force's premier institution for developing leaders of character

Mission Statement

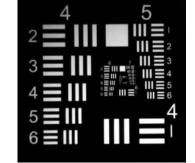
Develop photon sieve technology for applications to warfighter, intelligence, surveillance, and reconnaissance, and scientific missions


FS-7 Program

Mission Objectives

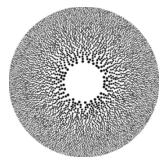
- Cadets "learn space by doing space"
- Get flight heritage on a polyimide photon sieve
- Deploy a photon sieve from folded configuration
- Determine performance of a photon sieve in space
- Once proven, technology can be scaled to meter ground resolution for space-based ISR applications

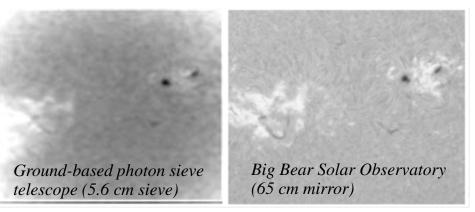
Background

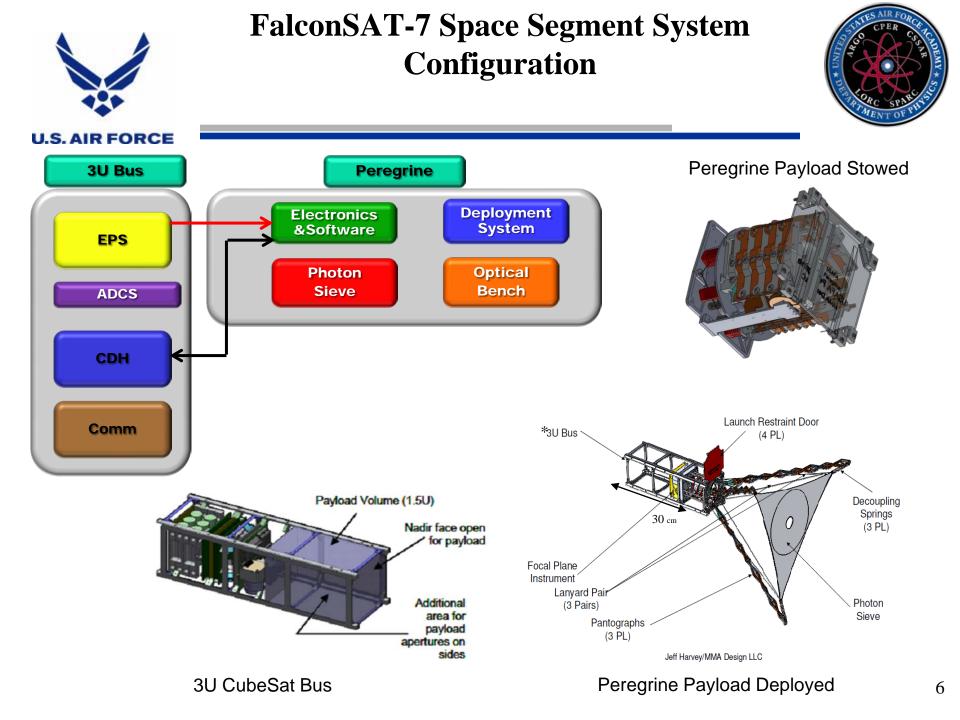


U.S. AIR FORCE

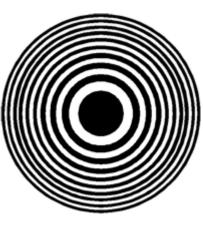
Problem: Imaging satellites are costly and heavy due in part to the size of the primary optic necessary for acceptable ground resolution

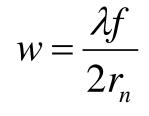

Solution: Membrane optics enable larger apertures, lower mass, and cheaper costs for imaging missions


- Photon sieve optical elements
 - Uses diffraction to focus light
 - Surface requirements relaxed by 100 times or greater compared to traditional optics
 - Very lightweight and can be "folded"
 - Inherently narrow-band due to chromatic aberration
 - Optical transmission (or reflection) less than traditional optics
 - Diffraction-limited imaging performance


Diffractionlimited imaging performance

Photon sieve


[Images courtesy of NASA Goddard]

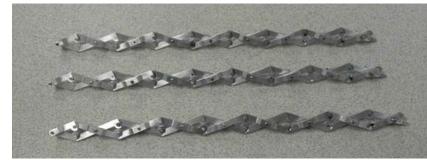


Photon Sieve

U.S. AIR FORCE

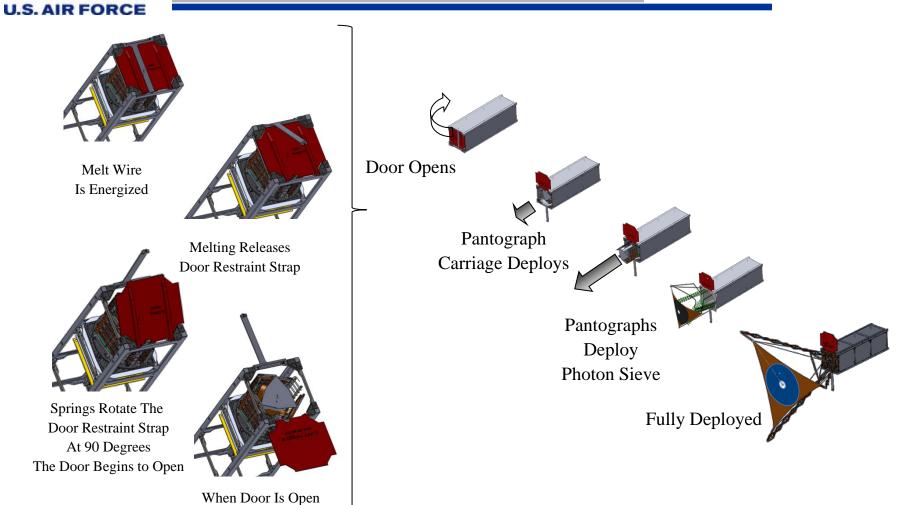
- Essentially a Fresnel Zone Plate with rings broken up into \geq individual holes
 - > 2.5 billion pinholes with 2-277 mm diameters $r_n^2 = 2nf\lambda + n^2\lambda^2$
 - 20 cm diameter with a 40 cm focal length \geq
 - Designed for H-alpha: 656.3 nm \geq
- In simplest version, holes are same diameter \geq (d) as ring width (w)
- Can be randomly or regularly distributed with angle
- Can have any density (fill) in each zone as \geq desired

Deployment System

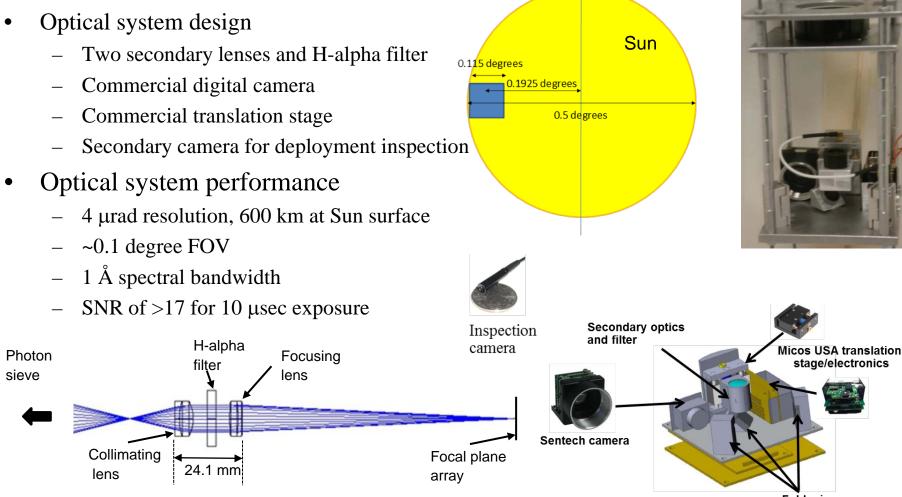


U.S. AIR FORCE

- Deploy sieve with spring powered and synchronized pantographs
- Forms the photon sieve plane with tensioned lanyards forming a determinate HEXAPOD
 - Structurally and thermally stable in micron range once deployed
 - Lanyards low or zero CTE material
- Store sieve within 6 cm hole in sieve center to prevent creases


Micro-G experiment characterizes position accuracy of deployment system

Deployment Sequence



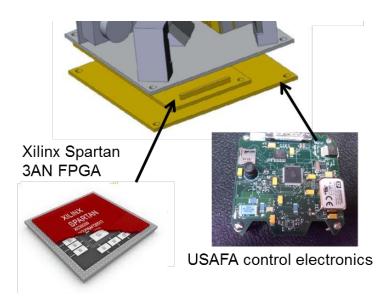
Carriage Plate Begins Deployment

Optical Bench Subsystem

U.S. AIR FORCE

Fold mirrors

Electronics Subsystem



U.S. AIR FORCE

Hardware interfaced to AVR32

- ≻FPGA
- ≻ To Lab View Bus Emulator (Serial)
- Sentech Camera
- Translation Stage and Controller
- Deployment System (Burn Wire)
- ➢ Inspection Camera

Electrical Interface to host spacecraft Power Data (RS 422) Photon/Sieve Telescope Investigation Peregrine Focusing Camera Command Stage And Control Camera Focal Electronics Frame Plane Array Grabber FPGA Deployment System сотѕ Developed for Spacecraft

Electronics Communication Connections

- ≻Xilinx FPGA
 - Serial to AVR32
 - Raw digital (10Bit) to Sentech Camera
- Micos USA translations Stage
 - GPIO to AVR32
- ➢Other hardware
 - Temperature sensors (LM50) SPI
 - Burn wire GPIO

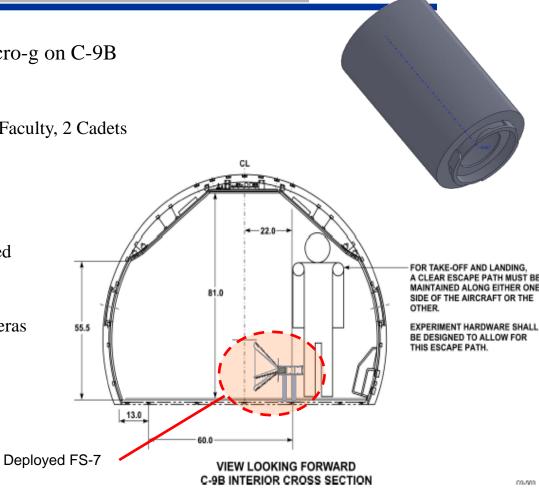
11

• Inspection Camera – analog

Peregrine Deployment Testing

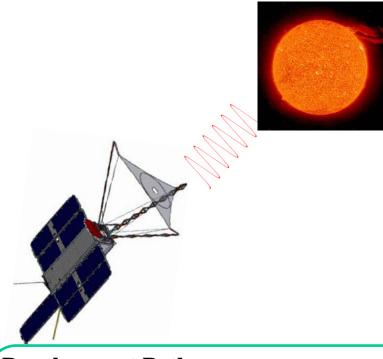
U.S. AIR FORCE

• Tested fall 2011 with stationary stand, deployment achieved by weights over pulleys


Micro-Gravity Test Concept

U.S. AIR FORCE

- Test deployment mechanics in micro-g on C-9B
 - No optics, electronics, burn wire
 - 14 trials over 30 arcs
 - Crew of 4 (minimum): Engineer, Faculty, 2 Cadets
- Reload with Pristine Canisters
 - Use bayonetted cylinder design
 - Pre-packed prior to flight
 - 4 Novastrat, 10 kapton, 0 patterned
- Diagnostics
 - Video taken with high speed cameras
 - Video from 2 perspectives
 - Crew observations



FalconSAT-7 Programmatics

U.S. AIR FORCE

Development Path

- Micro-gravity experiment NASA/DoD
- CubeSat mission-funded
- ESPA-class or 6U CubeSat mission

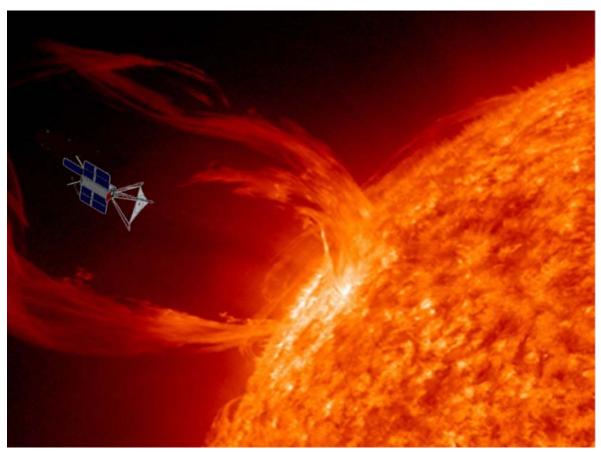
Schedule

- Dec 2011: CubeSat mission PDR
- Aug 2012: Micro-G test of deployment system
- Dec 2012: CubeSat mission CDR
- May 2013: CubeSat flight model finished
- Aug 2013: CubeSat I&T complete

Micro-g Test Objectives

- Deploy a photon sieve from folded configuration
- Determine optical alignment of photon sieve

CubeSat Mission Objectives


- Image the Sun in the hydrogen alpha wavelength
- Determine imaging performance of a photon • sieve in space

Conclusion

FalconSAT-7 is an exciting initiative using advanced technology with high risk but even higher payoff

