

Photodiode Placement & Algorithms for CubeSat Attitude Determination

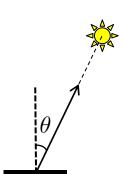
John C. Springmann and James W. Cutler

Michigan Exploration Lab University of Michigan, Ann Arbor, MI

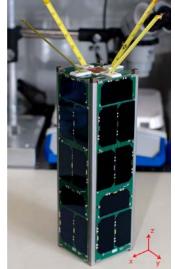
April 20, 2012 CubeSat Developers' Workshop

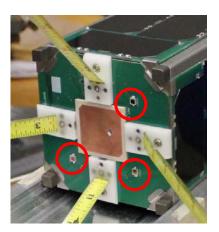
Photodiodes are very common attitude sensors.

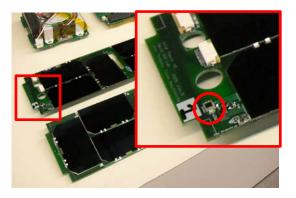
What are the design considerations?


How can they be used more effectively?

A E R O S P A C E E N G I N E E R I N G


Photodiodes output current as a function of light intensity and angle to the light source

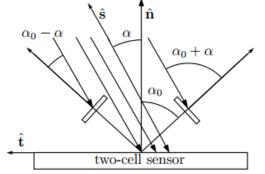

$$\tilde{I} = I_0 \cos(\theta) + \eta_i$$
$$\tilde{V} = V_0 \cos(\theta) + \eta_v$$



Use for coarse sun sensing.

A single photodiode provides 1D information – combine sensors for sun vector estimates.

Photodiodes on RAX-1



Typical photodiode configurations for estimating a sun vector

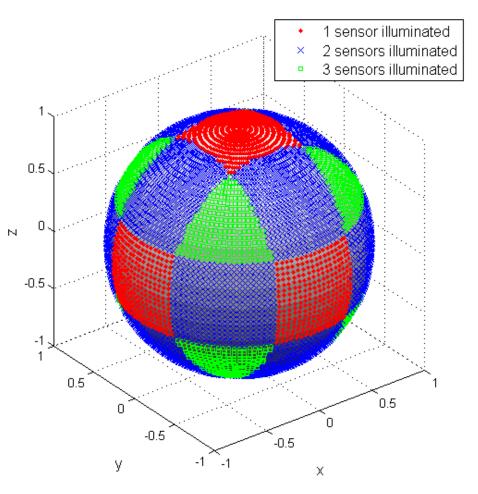
1. Perpendicular sensors – photodiodes mounted on each face of the CubeSat

Single measurement:Vector from 3 sensors:
$$\tilde{V} = V_0 \cos(\theta) + \eta_v$$
 $\tilde{\vec{s}} = \begin{bmatrix} \tilde{V}_i & \tilde{V}_j & \tilde{V}_k \\ V_{0,i} & V_{0,j} & V_{0,k} \end{bmatrix}^T$ Two photodiodes combined to get sup vector component in single

2. Two photodiodes combined to get sun vector component in single plane [1]

Closed-form equation for the sun components in the **n-t** plane with known angles α

[1] Chris Hall. Chapter 4: Attitude Determination. Course notes. http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/attde.pdf

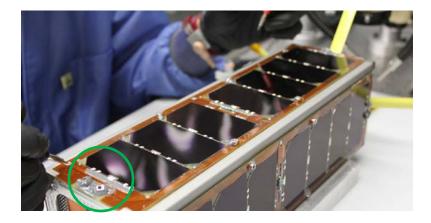


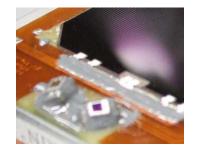
Consider field-of-view constraints carefully

Number of photodiodes illuminated for 60° photodiodes mounted on each surface of the CubeSat (RAX-1 configuration):

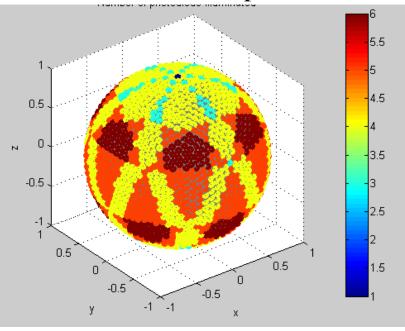
Complete sun vector available only for limited attitudes.

Is a full sun vector needed or 1-2 components ok?




AEROSPACE

GINEERING



On RAX-2, photodiodes mounted at angles to improve coverage

3 angled photodiodes on the 10 x 30 cm faces, single direction on the 10 x 10 cm faces Number of photodiodes illuminated over the attitude sphere

> 99.5% of attitude sphere covered by at least 3 phototiodes

AEROSPACE

Peak sensor output is key for sun vector estimation. How to measure?

Single measurement:

Vector from 3 sensors:

$$\tilde{V} = V_0 \cos(\theta) + \eta_v \qquad \qquad \tilde{\vec{s}} = \begin{bmatrix} \tilde{V}_i & \tilde{V}_j & \tilde{V}_{k} \\ V_{0,i} & V_{0,j} & V_{0,k} \end{bmatrix}^T$$

Ground-based testing? Spectrum and intensity must match orbit for accurate results.

On-orbit estimation?

Ground-based testing for rough gain validation. Use on-orbit data improve accuracy.

On-orbit, attitude-independent photodiode calibration

<u>Goal</u>: estimate maximum voltage of each sensor $\tilde{\vec{s}} = \begin{bmatrix} \tilde{V}_i & \tilde{V}_j & \tilde{V}_{k} \\ V_{0,i} & V_{0,k} \end{bmatrix}^T$

Approach:

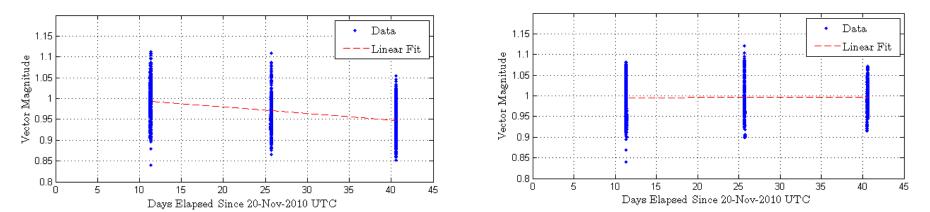
Attitude-independent calibration using the vector magnitude

$$\left(\frac{\tilde{V}_i}{V_{0,i}}\right)^2 + \left(\frac{\tilde{V}_j}{V_{0,j}}\right)^2 + \left(\frac{\tilde{V}_k}{V_{0,k}}\right)^2 = 1$$

Minimization problem to estimate the peak voltage output given the measurements. For estimate peak voltages only, can formulate as linear least-squares problem.

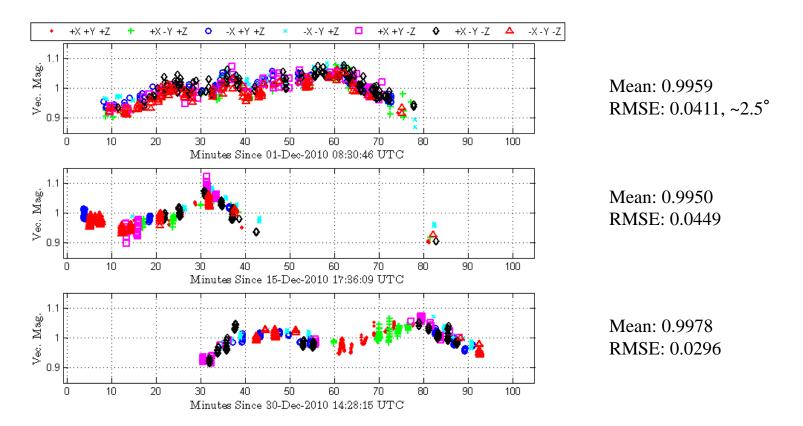
Application to RAX-1 data: J. Springmann, J. Cutler, "<u>Initial Attitude Analysis of the RAX Satellite</u>", Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Girdwood, Alaska, August 2011.

Accessible from <u>http://exploration.engin.umich.edu</u>.


AEROSPACE

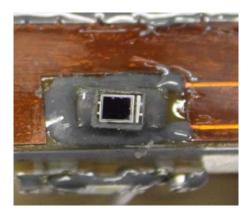
Lesson learned: photodiode degradation on-orbit due to UV radiation (RAX-1 data)

Sun vector magnitude using pre-flight estimates of max voltages from 3 data sets over 2 months: Vector magnitudes after calibration with on-orbit data:


AEROSPACE

Calibration used to compensate for degradation. Can also be used to estimate peak output of saturated sensors

Results for individual data sets

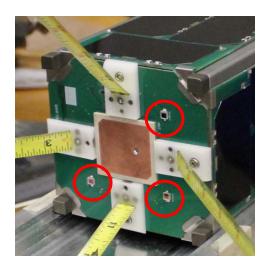

Future improvements: inclusion of temperature and angular mis-alignments

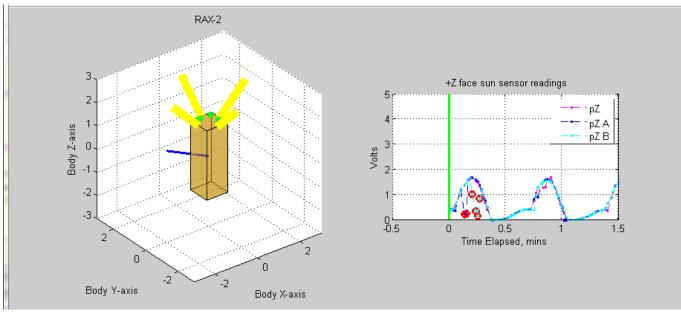


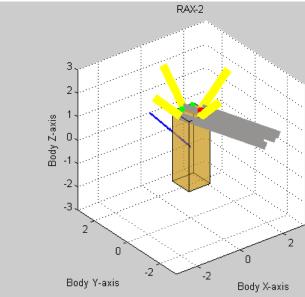
Changes for RAX-2 to prevent degradation

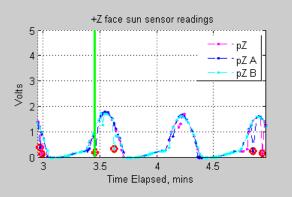
Coverglass added to photodiodes. Same type a used on solar cells.

RAX-1 and RAX-2 photodiodes are OSRAM SFH2430.




Uses beyond attitude determination...


- Single photodiode per solar panel is useful to easily verify solar panel performance
- Antenna deployment verification



A E R O S P A C E E N G I N E E R I N G

13

A E R O S P A C E E N G I N E E R I N G

Summary

Photodiodes can be very beneficial. Key factors:

- Peak sensor output is the dominant calibration parameter
- Sensor normal directions and FOV

Is a full sun vector needed?

Can be useful beyond attitude determination, such as antenna deployment verification

RAX attitude determination subsystem design:

John C. Springmann, Alexander J. Sloboda, Andrew T. Klesh, Matthew W. Bennett, James W. Cutler, **The attitude determination system of the RAX satellite, Acta Astronautica**, Volume 75, June–July 2012, Pages 120-135.

Acknowledgements and questions

Funding provided by NSF (RAX-1 and RAX-2) and the Department of Defense through an NDSEG fellowship.

Email: jspringm@umich.edu