

Low Power Magnetic Attitude Control System for a CubeSat

Jesse Frey, Donald Mentch, Michael Polites, Joseph Hawkins, Denise Thorsen

> University of Alaska Fairbanks Alaska Space Grant program

Concept

Nadir Pointing CubeSat with low power magnetic control

Low Power Magnetic Torquers

- Hard magnetic material reduces power consumption
- Allows bias with no power penalty

Bias algorithm

- No required attitude knowledge
- Three axis magnetic control

Bias Algorithm North

Motivation

- Moderate power usage
- More control of attitude
- More complex algorithm

nadir pointing

- No electric power usage
- Attitude
 relative to
 - local
 - magnetic field

Low-power Magnetic Torquer

History

Initial Concept

- Originally conceived to dump momentum from reaction wheels on larger spacecraft
- Used remendur for torquer cores

CubeSat Adaptation

- Primary Torquers with Alnico 1 for detumble.
- Vernier Torquers with inert core coated with magnetic material for alignment

Algorithm Overview

- 3 modes
 - 1 for detumble
 - 2 for alignment
- dual axis bias for threeaxis attitude alignment
- No direct attitude knowledge necessary
- Latitude information required for alignment

Mode 1 (Detumble) Algorithm

- Detumble is the only use of the ALNICO1 torquers
- The detumble algorithm can arrest a maximum rate of 5°/s
- For a 64° inclination the detumble procedure will take 2 orbits

Bias Windows

Alignment Window Offsets

Alignment Modes

Mode 2

- Apply bias in equatorial and north polar windows
- Outside windows coast
- Run for 10 orbits

Mode 3

- Apply bias in north polar window
- Outside window run detumble algorithm with small torquers

CubeSat System Overview

- Core driven to saturation by a 7A current pulse
- Capacitor stores charge for current pulse to smooth current spikes and prevent supply overdraw
- Resistor charges capacitor from supply rail

Torquer Placement

Joules of Energy Consumption

Future Work

- Need to balance magnetic dipole moments
- Correct magnetometer data for locally generated magnetic fields
- Validate Control Algorithm

Conclusion

Low power for nadir pointing CubeSat applications

Designed for high inclination orbits

Alignment accuracy depends on balance of torque rods

Questions

Jesse Frey : jmfrey@alaska.edu

