Update on Dependable Multiprocessor (DM) CubeSat Technology

presented at the

2011 Summer CubeSat Workshop/ Small Satellite Conference

August 6, 2011

Dr. John R. Samson, Jr. Honeywell Aerospace, Defense and Space Clearwater, FL john.r.samson@honeywell.com

Outline

- Brief overview of DM technology
- Recap of 2010 Summer CubeSat Workshop presentation
- Update on DM CubeSat technology development since 2010 Summer CubeSat Workshop
 - DM CubeSat Testbed
 - SMDC TechSat
- Elicit interest in possible joint DM-CubeSat and/or DM small satellite experiment
- Summary and Conclusion

Recap of 2010 Summer CubeSat Workshop Presentation

- Introduced DM technology to the Small Satellite/CubeSat community
- Provided overview of the current DM CubeSat effort
- Elicited interest in possible joint DM-CubeSat and/or DM small satellite experiment
 - radiation issues
 - thermal issues
 - structural issues
 - benefits of increased on board processing

Dependable Multiprocessor – What is it?

- cluster of COTS high performance processors
- operated under the control of a reliable system controller and technologyand platform-independent fault tolerant middleware
- flexible
 - user-configurable fault tolerance includes hybrid replication [temporal and spatial self-checking and TMR (Triple Modular Redundancy) for critical functions and ABFT (Algorithm-Based Fault Tolerance)]

Honeywell

- scalable
- easy to use

Control Bus/Discretes (cPCI) Spacecraft Interface (RS422) COTS COTS COTS Mass Sensor System Sensor ... Processing Processing Processing **Data Storage** Controller I/O Node Node Node Node High Speed Interconnect (Ethernet)

DM ST8 Flight Experiment System

The platform and technology-independent DM Middleware (DMM) is DM technology; DM technology is <u>not</u> the underlying hardware

Update on DM CubeSat Technology Development Honeywell

- DM CubeSat accepted as a 2010 Army SERB (Space Experiments Review Board) experiment
- DM CubeSat experiment merged with SMDC High-Power CubeSat experiment called SMDC TechSat for presentation at the 2010 DoD SERB
- SMDC TechSat project proceeding
 - successful PDR in May 2011
 - Flat-Sat Demo scheduled for September 2011
 - CDR scheduled for April 2012
 - experiment flight-ready October 2012
- DM CubeSat Testbed developed at Honeywell

SMDC TechSat Flight Experiment Configuration

Launch Size:	10 cm x 10 cm x 34 cm
Deployed Size:	78 cm x 78 cm x 44 cm
Mass:	6 kg
Power:	~65 Watts (Peak) (85 Watts goal)
	~40 Watts (On-Orbit Average)

Example: Gumstix[™] Computer on Module (COM) - A Small, Light-Weight, Low-Power Processing Solution * Honeywell

- Gumstix[™] COM Modules
 - -- Gumstix[™] Overo Earth (Basic Processor, Memory & I/O)
 - -- Gumstix[™] Overo Water (Processor, DSP, Memory & I/O)
 - -- Gumstix[™] Overo Fire (Processor, DSP, Memory, I/O, & BlueTooth/WiFi)

Possible SMDC CubeSat Configuration

DM CubeSat Testbed Development To Date

- Built DM CubeSat Testbed
- Completed initial end-to-end, DM, space-ground, flight experiment command and telemetry system over RF link using Pumpkin Sat space and ground communication modules

- leveraged \$14M NASA-funded NMP ST8 DM technology development
 - -- Dependable Multiprocessor Middleware (DMM)
 - -- ground control and telemetry software
 - -- multiple applications (HSI, SAR, LU Decomposition, et al.)
- integrated Gumstix camera with DM payload processor
- implemented JPEG data compression algorithms
- Demonstrated DM CubeSat Testbed system operation including fault recovery and real-time, ground-commanded data compression

DM CubeSat Testbed Photo (1 of 2)

Pumpkin CubeSat Kit Development Board Pumpkin Sat 3U Skeleton Pumpkin Comm. Modules **DM Payload Processor**

DM CubeSat Testbed Photo (2 of 2)

Example: DM Ground-Commanded Programmable Data Compression – JPEG 2000 Algorithm

Honeywell

Raw Image Size: 921654 Bytes Frame Time: 15 seconds

Compressed Image Size: 435734 Bytes Execution Time: 2.449 seconds

Compressed Image "Error" *

Average R error = 0.0 ^ Average G error = 0.0 ^ Average B error = 0.0 ^

Raw Image Size: 921654 Bytes Frame Time: 15 seconds

Compressed Image Size: 922 Bytes Execution Time: 3.041 seconds

Compressed Image "Error" *

Average R error = 11.183 ^ Average G error = 8.626 ^ Average B error = 9.947 ^

* ABS [Raw Image Pixel (x,y) – Compressed Image Pixel (x,y)] ^ Average difference in pixel value over the entire image (8-bit pixel data; range 0 - 255)

DM Payload - Command & Telemetry

 DM ground system console provides the top-level control of the DM system

Honeywell

- DM ground system console provides status of DM components via the State-of-Health (SOH) Data display ^
- DM ground system console provides display of DM events via the Experiment Telemetry Data display ^
- DM ground system logs SOH status and DM events activity ^

^ The DM ST8 system was designed to be a flight experiment, instrumented to characterize the radiation environment and the DM response to radiation induce errors; We are using this software to lower cost and risk for the SMDC TechSat

DM Payload - SOH Display – Key Areas of Interest

DM Payload - SOH Data Display

If you see these numbers increase and you are not in a radiation test facility running beam tests or you are not doing Software-Implemented Fault Injection (SWIFI) experiments, head for shelter because it means that you are being bombarded with radiation. (DM is a poor man's omnidirectional radiation detector.) *

> * A few bridge "errors" are detected during power-up self-test; this is normal; after power-up testing is complete, these numbers should not change

DM Payload - Experiment Data Telemetry Display

VPSIM (c:\SCPL_Sim_111708\spacecraftSimProject\uir\20100507163041	_RX_manualstart.log)	
UTC Time Fri May 07 15:59:37 2010 Spacecraft Time Message 434		Scrolling Experiment Data Telemetry Display *
Spacecraft SDH Poll 434 Spacecraft Telemetry Poll 434 Spacecraft DM Payload Command 0 Command Filename		
State of Health Data Display Experiment Data Display Job Record Job Record Number:	56	
Time of Job Event: Job ID Number: Mission ID Number: Source Node ID Number: Job Record Type ID Number: Job Name:	1273248186.244969 12 12 COMPLETION_TIME goldenFFT	 * Displays the most recent testbed events application activity DMM component activity
Job 28 Execution Time: DMM Status Record DMM Status Record Number:	4.066667	Job Record DMM Error Record DMM Status Record
DMM Error Record	APPLICATION_COHP CLEAN_EXIT 2026	 oldest event at the bottom of the screen most recent event at the top of
DMM Error Record DMM Error Record Number: Job ID Number: Mission ID Number: Source Node ID Number: Error Record Type ID Number: Error Detection Mechanism ID Number: DMM Error Record Data Log1: DMM Error Record Data Log2: DMM Error Record Data Log3: DMM Error Record Data Log3: DMM Error Record Data Log3: DMM Error Record Data Log3:	7 1273248182.219004 28 12 APPLICATION_COMP GOLDEN_STANDARD 0 0 0 0 0 0 0 0	the screen - all of the telemetry data records are logged and can be saved for further analysis
Job Record Job Record Number: Job ID Number: Mission ID Number: Source Node ID Number: Job Record Type ID Number: Job Name:	55 1273248182.178302 28 12 START_TIHE goldenFFT	

DM Payload - Experiment Data Telemetry Log

	DMM Error Record		
	DMM Error Record Number: Time of Error Event: Job ID Number: Source Node ID Number: Error Record Type ID Number: Error Detection Mechanism ID Number: DMM Error Record Data Log1: DMM Error Record Data Log2: DMM Error Record Data Log3: DMM Error Record Data Log3: DMM Error Record Data Log5:	2 1272490230.114953 8 12 1 APPLICATION_COMP GOLDEN_STANDARD 0 0 0 0 0 0 0 0 0 0	Job ID numbers are used to
The Experiment Data Telemetry log is created and updated automatically whenever	DMM Status Record DMM Status Record Number: Time of DMM Event: Source Node ID Number: Record Type ID Number: DMM Component State: DMM Process ID: Job Record	34 1272491175.974000 1 APPLICATION_COMP CLEAN_EXIT 22813	correlate related Experiment Data Telemetry records
the VPSIM is operating. QUIT VPSIM will close the file. The log file is time-stamped with the	Job Record Number: Time of Job Event: Job ID Number: Mission ID Number: Source Node ID Number: Job Record Type ID Number: Job Name:	16 1272490234.242974 8 12 COMPLETION_TIME goldenFFT	
time VPSIM started for	Job 8 Execution Time:	4.116667	
this run.	DMM Status Record DMM Status Record Number: Time of DMM Event: Source Node ID Number: Record Type ID Number: DMM Component State: DMM Process ID:	35 1272490951.307000 1 APPLICATION_COMP UP_ACTIVE 23149	In the Job Record , the
	DMM Status Record DMM Status Record Number: Time of DMM Event: Source Node ID Number: Record Type ID Number: DMM Component State: DMM Process ID:	36 1272491417.974000 2 APPLICATION_COMP UP_ACTIVE 21693	decimal Source Node ID Number is the binary representation of the number of nodes assigned
	DMM Status Record DMM Status Record Number: Time of DMM Event: Source Node ID Number: Record Type ID Number: DMM Component State: DMM Process ID:	37 1272490552.307000 3 APPLICATION_COMP UP_ACTIVE 20267	to the application, e.g., decimal 7 is 0111; Nodes 1, 2, and 3 are assigned to this job
17	Job Record Job Record Number: Time of Job Event: Job ID Number: Mission ID Number: Source Node ID Number: Job Record Type ID Number: Job Name:	17 1272490426.276307 9 12 7 START_TIME HSIPARCPABFTI_MPI	

DM-Based Gumstix Supercomputer in Space (?) Honeywell

- Sandia National Laboratory's 196 TI OMAP 3530 Gumstix[™] Overo Tide Mini Supercomputer running Linux
 - http://www.linuxfordevices.com/c/a/News/Sandia-StrongBox-and-Gumstix-Stagecoach/?kc=rss
 - developed for botnet research as part of SNL's Mega Tux project
- History of trying to put COTS supercomputing in space
 - DARPA's pioneering Space Touchstone effort to fly Intel Paragon Supercomputer in space
 - part of the genesis of DM technology
- Application of DM technology to a Gumstix-based supercomputer
 - DM technology is as scalable as the high performance interconnect and the skill of the developer of the parallel application
 - FTM sub-modules to avoid bottlenecking a single FTM node, but this has been done before on the AOSP (Advanced Onboard Signal Processor) project
 - -- no single node monitored the entire AOSP network
 - -- multiple "FTM" nodes monitored different groups of nodes, checked on each other, and could re-constitute a group and a new monitoring node if a monitoring node went down, etc.
 - need for a distributed MDS function (?)
 - need for distributed check-pointing (?)
 - other

- DM technology benefits
 - DMM is technology-, platform-, and application-independent
 - -- the Gumstix[™] ARM is just the most recent successful porting target
 - allows space applications to use state-of-the-art COTS processors
 - -- onboard processing no longer need to be 2-3 generations behind state-of-the-art terrestrial processors
 - applicable to a wide-range of missions
 - allows more onboard processing within a given size, weight, power, and cost constraints
 - supports more science/more autonomy
 - offers faster onboard processing, faster frame processing
 - reduces downlink bandwidth requirements
 - provides processed data/information directly to the user
- Combination of small, light-weight, low-power, high performance COTS processing with high-power CubeSat technology has been indentified as the next key CubeSat development
- DM and DM CubeSat technology is moving closer to flight
- NASA, the DM project, and Honeywell are interested in exploring collaborative CubeSat, Small Satellite, UAV, UAS, and HAA flight opportunities

Acknowledgements

Honeywell

- The Dependable Multiprocessor* effort was funded under NASA NMP ST8 contract NMO-710209
- The DM CubeSat effort to date has been carried out on Honeywell internal investment

For more information contact:

Dr. John R. Samson, Jr. Honeywell Defense & Space, Clearwater, FL john.r.samson@honeywell.com (727) 539 – 2449

* The Dependable Multiprocessor (DM) project was originally known as the Environmentally-Adaptive Fault-Tolerant Computer (EAFTC) project

- [1] Samson, Jr., John R., "Implementation of a Dependable Multiprocessor CubeSat," Proceedings of the 2011 IEEE Aerospace Conference, Big Sky, MT, March 8, 2011.
- [2] Samson, Jr., John R., "Dependable Multiprocessor (DM) CubeSat Implementation," 2010 Summer CubeSat Workshop, August 8, 2010.
- [3] Samson, Jr., John R., Grobelny, Eric M., Clark, M., Driesse-Bunn, S., Van Portfliet, S., "NMP ST8 Dependable Multiprocessor: Technology and Technology Validation Overview," Proceedings of the 48th AIAA Aerospace Sciences Meeting Conference, Orlando, FL, January 4-8, 2010.
- [4] Grobelny, Eric M., Samson, J., Clark, M., Driesse-Bunn, S., Van Portfliet, S., "NMP ST8 Dependable Multiprocessor: Technology Validation Approach and Results," Proceedings of the 48th AIAA Aerospace Sciences Meeting Conference, Orlando, FL, January 4-8, 2010.
- [5] Samson, Jr., John R., Grobelny, Eric M., Driesse-Bunn, S., Clark, M., Van Portfliet, S., "Post-TRL6 Dependable Multiprocessor Technology Developments," Proceedings of the 2010 IEEE Aerospace Conference, Big Sky, MT, March 7-12, 2010.
- [6] Samson, Jr., John R., and Grobelny, E., "NMP ST8 Dependable Multiprocessor: TRL6 Validation – Preliminary Results," Proceedings of the 2009 IEEE Aerospace Conference, Big Sky, MT, March 8-13, 2009.

Back-up Charts

Non-Intrusive DM Flight Experiment

Baseline SMDC TechSat DM Flight Configuration

