COPPER: IR Imaging and Radiation Studies

Steve Massey, EE/CpE 2012 smassey2@slu.edu Saint Louis University

http://astrolab.slu.edu

UNIVERSITY

Overview Payloads Spacecraft Bus Conclusion

SAINT LOUIS UNIVERSITY

Saint Louis University Space Systems Research Lab

Parks College of Engineering, Aviation and Technology

36 full-time faculty, 600 students AE, ME, EE, BME, Civil, Aviation, Physics SSRL organized in 2009

Joined AFRL's University Nanosatellite in 2009

COPPER, Nanosat-6, 2009-2010 Argus-LO, Nanosat-7, 2011-2012

COPPER manifested through NASA CubeSat Launch Initiative

The COPPER Mission

Imaging Mission:

Flight-test the abilities of <u>a commercially</u> <u>available compact uncooled microbolometer</u> <u>array</u> to take infrared images of Earth's oceans and atmosphere

Radiation Mission:

Improve the predictive performance modeling <u>of</u> <u>radiation effects on small, modern space</u> <u>electronics devices</u> by collecting radiation particle collision data from electronics monitoring experiments and relaying the data to the ground

Project Duration: 2009-2012

Initial concept: 2009-2010 Nanosat competition **Mission Modified to Fit the CubeSat Launch Initative** Manifested for Launch: NASA CRS-2 (ELaNa IV, March 2012), Falcon-9

Science Basics

Imaging Payload

Long wave infrared (LWIR), 7 to 13 microns

Thermal emissions night and day

Clouds, ocean features, and urban heat islands

Radiation Payload

Small electronics with bit-flip monitoring system Memory elements between 20nm and 40nm

COPPER Concept of Operations

CubeSat Developer's Workshop - Summer 2011

COPPER Dataflow

Overview Payloads Spacecraft Bus Conclusion

SAINT LOUIS UNIVERSITY

Imaging Payload (Why?)

CubeSats benefit from nearstandardized components for CD&H, power, and communication subsystems. No imaging solution currently exists COPPER's imaging desires to

- satisfy three niches
 - Space Situational Awareness
 - On-Orbit Servicing
 - Earth Observation

Imaging Payload Applications

Space Situational Awareness

What objects are near a High Valued Asset? Active spacecraft will need to activate thrusters for orbital insertion and maintenance Energetic thruster plumes cannot be hidden. Visible-light already extensively studied; infrared camera chosen.

COPPER will flight-qualify the imaging subsystem for future SSRL SSA missions.

Earth Observation

Multiple useful phenomena visible in infrared Greenhouse gasses

Ozone, 9.6um, Methane, 7.6um, N2O, 7.9um Urban heat islands

103km by 138km viewing area for COPPER's altitude and lens

On Orbit Servicing

Inspection of other spacecraft on-orbit

Imaging Application Requirements

Earth Observation

Seconds-per-frame imaging speeds acceptable

Retrieval of lossless images over modest connection

On Orbit Servicing

Live downlink over larger connection.

Lossy imaging acceptable

Space Situational Awareness

Multi-second storage of high-FPS video Video retrieval over modest connection

General

Robust enough for space operations

Power, mass, and bandwidth restrictions

Imaging Payload Development

COPPER Requirements

Controllable frame rate (30FPS to 10SPF)

Storage of images for later downlink

Lossless image downlink (compression optional)

Hardware Chosen

FLIR Tau 320 Microbolomter Array

Xilinx Spartan3E FPGA

2GB SD Card

Hardware Design

SPI, SD, and Tau interfaces in VHDL Connected via bus based on ISA

Radiation Payload (Why?)

Mission: To improve the predictive performance modeling of radiation effects on small, modern space electronics devices by collecting radiation particle collision data from electronics monitoring experiments and relaying the data to the ground.

SCHOOL OF ENGINEERING

Trailblazer mission for future ARGUS spacecraft in partnership with Vanderbilt University

Radiation Payload Applications

Why Test?

 Effects of space radiation on modern electronics (< 60 nm scale) are very poorly modeled (predicted rates are off by orders of magnitude)

Why Space?

- Dominant error source(s) not well-understood (low vs. high energy particles, protons vs. electrons)
- Modern electronics have many operational modes
- Ground-based testing would require years of test time and millions of dollars per memory device.

<u>Orbital testing</u> can be used to cost and timeeffectively calibrate predictive models.

Low-Energy Proton Upsets

Previous work reported data collected by Vanderbilt and NASA Goddard on TI 65 nm bulk CMOS process [Sierawski, TNS 2009]

Consistent with evidence of proton direct ionization contributing to single event upsets (SEUs) reported for IBM 65 nm SOI process [Rodbell, TNS 2007][Heidel, TNS 2008]

Does this dramatic increase in cross section at low energy cause and increase in on-orbit failure rates

SAINT LOUIS UNIVERSITY

Radiation Payload

Examples of Breakdown of Older SEE Models

Radiation Payload Development

COPPER Requirements

Connect to CubeSatKit bus, I2C interface

Hardware Chosen

30nm SRAM technologies

Rad-hardened FPGA TBD

Rad-hardened data storage TBD

Overview Payloads Spacecraft Bus Conclusion

Power

Structure

ClydeSpace EPS

Lithium polymer batteries

Custom solar panels

SpectroLab TASC solar cells Expected 25% efficiency

2.2Wh generation per orbit 1.4Wh consumption per orbit

CubeSat Kit 1U Skeleton RevD Custom top-plate

Viewport for camera

Custom camera holder

Reduce load of camera on PCB

8/6/2011

Attitude Determination and Control

Passive ADC

Zero power consumption

Permanent magnets

Aligns satellite with magnetic field lines of the earth

Hysteresis rods

Dampens oscillations

Communications

Primary Communications

Microhard MHX2420

2.4GHz spectrum, 9600bps

Secondary Communications

StenSat Radio Beacon

440MHz spectrum, 1200bps

Ground Stations

S-Band stations at SSRL, Santa Clara

Member of Santa Clara Beacon Health Monitoring Network for 400MHz communications SCU licensing

C. Kitts, A. Young, et.al

8/6/2011

CubeSat Developer's Workshop - Summer 2011

C&DH

CubeSatKit Motherboard

Flight proven COTS ecosystem

CubeSatKit PIC24F PPM

Sufficient peripheral connections 32MHz operation

Serial Communication Used				
ART + handshaking				
(not dedicated)				
ART, no handshaking				
(not dedicated)				
(not dedicated)				
(not dedicated)				
ART, no handshaking				
(not dedicated)				

Overview Payloads Spacecraft Bus Conclusion

Future Milestones

Date	Milestone		
August 2011	P-POD integration fit check		
Summer 2011	Complete engineering unit integration and SSRL testing		
October 2011	Complete flight unit integration and SSRL testing		
November 2011	Mission Readiness Review (Launch-120 days)		
December 2011	Delivery to Cal Poly for testing (Launch-90 days)		
February 2011	Cal Poly delivers COPPER to NASA facilities for integration onto Falcon-9 (Launch-30 days)		
March 2012	Launch from Cape Canaveral on Falcon-9 CRS-2		
May 2012	COPPER deorbit and End-Of-Life		

COPPER Team

COPPER is a team of undergraduate students working since 2009

ADC	CDH	Communication	Ground Operations	Payload	Power	Structure	Testing	Thermal
Gerrit Smith	Maria Barna	Rubianne Garcia	Wesley Gardner	Steve Massey	Richard Henry	Rikin Parikh	Tom Moline	Mentos Olson
Phillip Reyes	Steve Massey		Joe Kirwen	Maria Barna	Gerrit Smith	Mentos Olson	Alli Cook	Rikin Parikh
Jim Dreas	Evan Cobb	Wesley Gardner	Nate Richard	Kerim Strikovic	Patrick Sullivan	Justin Krofta	Nate Richard	Aaron Rowe
Justin Krofta	Andrew Herbig	Joe Kirwen	Rubianne Garcia	Nick Elmer	Mike Ostrander	Phillip Reyes	Justin Krofta	
	Joe Kirwen	Evan Cobb	Andrew Herbig	Jessica Hill		Nate Richard	Jessica Hill	
	Wesley Gardner	Andrew Herbig	Evan Cobb			Peter Hasser	Nick Elmer	
	Jordan Wisch	Peter Hasser						

Acknowledgments

This work was supported in part by the following agencies

- NASA (CubeSat Launch Initiative)
- AFOSR & AFRL/RV (University Nanosat-6)
- NASA Missouri Space Grant Consortium
- Saint Louis University President's Research Initiative
- The team would like to thank
 - Dr. Robert Reed, Andrew Sternberg and the ISDE team
 - Dr. Michael Swartwout, Dr. Kyle Mitchell and Dr. Sanjay Jayaram to their close assistance and mentorship.
 - Frank Coffey and Darren Green for their guidance and help.
 - A special thank you to Kay Bopp for her endless patience and perpetual assistance.

SAINT LOUIS UNIVERSITY

COPPER: IR Imaging and Radiation Studies

Steve Massey, EE/CpE 2012 smassey2@slu.edu Saint Louis University

Backup Slides

Transients from Single Particle Event

Soft Error Examples:

- Single Event Transient: A current pulse occurring at a circuit node due to single energetic particle event
- Single Event Upset: A change in a circuit's logic state induced by a single energetic particle event

SAINT LOUIS UNIVERSITY

New SEE Challenges

Complicated charge-collection volumes

Complex Overlayers

Ion tracks larger than device sizes

One event may affect multiple nodes

SAINT LOUIS UNIVERSITY

Vanderbilt's Advanced Radiation Effects Analysis

Observed and Predicted SEU Rate for a Modern RAD-HARD SRAM

- SRAM used on NASA MESSENGER spacecraft
- Observed Average SEU Rate:
 - 1x10⁻⁹ Events/Bit/Day
- Vendor predicted rate using CREME96:
 - 2x10⁻¹² Events/Bit/Day
 - Classical Method nearly a factor 500 lower than observed rate
- MRED rate agrees with on-orbit oberservation
 - Believed to be due to tungsten overlayers
 - Need a well defined space experiment to provide proof

