

1.07

1.07

1.07

8.18

A THERMAL AND MECHANICAL ANALYSIS OF TRIO CINEMA CUBESAT MISSION

Jaegun Yoo^a, Taeyeon Kim^a, Ho Jin^a, Jongho Seon^a, David Glaser^b, **Dong-Hun** Lee^a, Robert P. Lin^{a,b}

^a School of Space Research, Kyung Hee University ^b Space Science Lab, University of California, Berkeley

Kyung Hee University School of Space Passarah

ABSTRACT

TRIO (TRiplet Ionospheric Observatory) CINEMA (CubeSat for Ion, Neutral, Electron, MAgnetic fields) is a space science mission with three identical CubeSats. Three institutes are collaborating to develop CINEMA CubeSats : i) two CubeSats by Kyung Hee University (WCU) program, ii) one CubeSat by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. In this paper, we present results of thermal and mechanical analysis, we are using the NX6.0 program and NASTRAN program. Through this analysis, we have increased the average temperature of top & bottom solar panels by 30 $^\circ$ C and derived natural frequency of the spacecraft is near 339.1 Hz.

INTRODUCTION THERMAL ANALYSIS The main thermal source when the satellite in the space is the CINEMA is a 3-unit CubeSat, with an approximate size of 10 cm x 10 cm x 30 cm and mass less than 2.9 **Process for thermal analysis** Sun and heat transfer by below basic formula. kgs. An attitude control system (ACS) uses torque coils, a sun sensor and the magnetometers and spins Heat transfer formula Thermal Design & Analysis Flow CINEMA spacecraft at 4 rpm with the spin axis perpendicular to the ecliptic plane. Each satellite is Mean value of Direct Solar Flux 1358±5 W / m² equipped with a SupraThermal Electron, Ion, Neutral (STEIN) instrument covering the energy range ~2-Modelina 200 keV, and a 3-axis magnetometer of magnetoresistive sensors.

Modes:		SAFE MODE		ACS Mode		Normal Mode	
	Base, mW	Duty	Power, mW	Duty	Power, mW	Duty	Power, mW
SAFE				000000			Second Second Second Second
Bus	120	100.0%	120	100.0%	120	100.0%	120
COM Rx	1,167	100.0%	1167	3.4%	40	3.4%	40
COM Tx	1,889	0.0%	0	0.6%	12	0.6%	12
Science Tx	9,750	0.0%	0	0.0%	0	2.8%	273
Instrument, LR	796	0.0%	0	100.0%	796	0.0%	(
Instrument, HR	1,653	0.0%	0	0.0%	0	100.0%	1,653
ACS	8,000	0.0%	0	10.0%	800	0.0%	(
		Total:	1,287		1,768		2,097
		Margin	49%		30%		44%
		Available	2,513		2,513		3,776

Subsystem	Mass, g
Chassis	463
Solar Arrays	375
MAG Boom system	160
Sun Sensors	10
Antennas	140
Avionics	500
Transmitter	57
Torque Coils	85
STEIN Detector Head	261
STEIN Electronics	90
STEIN HVPS	150
MAG electronics	45
Instrument Digital	90
Instrument LVPS	150
Harnessing	100
Thermal	50
TOTAL	2726

 (f_n) is natural frequency

 $W_{\tilde{u}}(f_n)$ is PSD of enforced acceleration

 $\ddot{x}_{s} = \sqrt{\frac{\pi}{2}} f_{n} Q W_{\ddot{u}}(f_{n})$

Process for Mechanical Analysis

So, It has to control the material density to get a natural frequency. The theory of random vibration can be expressed by

Mechanical & Random Vibration

Sinusoidal + Random load

Here, x_{s} is the RMS acceleration Q is amplification factor

Albedo (30±5)% of Direct Solar

<Stefan-Boltzmann's law>

 $Q = A\sigma T^4 \times \epsilon$

• Total Conductance

Results

Results of the random vibration analysis

Results of the natural frequency

1 st Mode Natural frequency					
Case 1	Case 2	Case 3			
413 Hz	339.2 Hz	339.1 Hz			

The 1st mode occurred near at the MAGIC. So, we measured the stress at the MAGIC, and calculated RMS value of displacement and stress.

•Displacement at Z direction

•Stress at XY direction

Direction	Direction Maximum Displacement		Maximum Stress	
Х	0.272 [mm]	XY	2459 [MPa]	
Y	0.494 [mm]	YZ	2521 [MPa]	
Z	0.421 [mm]	ZX	1721 [MPa]	

Conclusion

In this thermal analysis, we can increase the average temperature of top and bottom solar panels by 30° C from using black paint to the surface of chassis and the inside of top & bottom solar panels. Furthermore, in order to decrease the temperature of magnetometer, we are considering changing the surface property to black paint. In mechanical analysis, the 1st mode is 339 Hz and the result of vibration test is competent value. Because the chassis of CINEMA is made from Al6061-T6 which has 96.5GPa of fatigue strength, 68.9 GPa of Modulus of Elasticity. From the result, we are confident that the CINEMA is stable state on the launcher.

School of Space Research, Kyung Hee University, South Korea E-mail: jaegunsd@khu.ac.kr (Thermal analysis), taeyeon@khu.ac.kr(Mechanical analysis)

