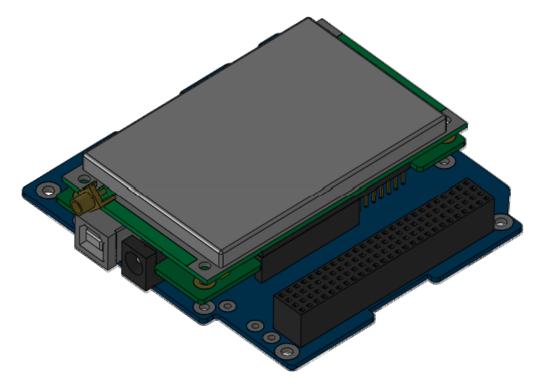

A Miniaturized Communication System for Cubesats

AstroDev

Kevin Brown and Tyler Burba www.astrodev.com

The 1U Mission: The Problem



A 1U mission can not sacrifice volume and mass to accommodate large subsystems.

The 1U Mission: Example

Pumpkin CubeSat Kit

Can you integrate your **entire** UHF communications subsystem into the same volume as a MHX2400?

http://www.cubesatkit.com/

The Radios: Method

• Move to radios which can be highly integrated onto PCB and existing subsystems.

Use modern electronics manufacturing

• Integrate RF cables into radio connect at antenna

The Radios: Operations

- Beacon
 - Satellite tracking, health and status, spacecraft reset
- VHF/UHF High Reliability Access
 - Command and Data
- L Band Secondary Up/Downlink
 - Data

The Radios: Capabilities

- HAM Compliant or Other
 - AX.25 (GFSK)
 - 802.11 (DBPSK)
- Power Levels
 - 27 to 33 dBm
- Data Rates
 - 1.2 to 38.4 kbps (low bands)
 - 115.2 kbps and greater (high bands)

The Radios: New in 2010/11

CII Radio

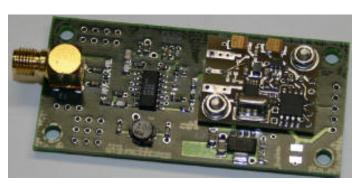
- 40 x 50 x 6 mm
- VHF/UHF/L
- < 200 kbps</p>
- < 36 dBm
- Full Duplex
- CLP Plug

- USD \$5000

The Radios: New in 2010/11

- Ne-2 Beacon
 - 15 x 25 x 3 mm
 - UHF
 - < 38.4 kbps</p>
 - < 33 dBm
 - Highly Integratable
 - Intern: Tyler Burba

Beacon Design Goals


To create a remotely reconfigurable UHF beacon that can change:

- protocol
- frequency
- power

with no physical access required

Current Beacons Available

- Stensat Radio Beacon
 - 430MHz to 440MHz
 - 1 watt max
 - 3.1 inches x 1.75 inches
 - Data Rates: 1200 baud AFSK and 9600 baud FSK
- ISIS
 - 400MHz to 450MHz
 - 300mW PEP, 150mW average
 - 3.5 inches x 3.7inches
 - 1200-4800 baud
- Next generation will continue to shrink in size

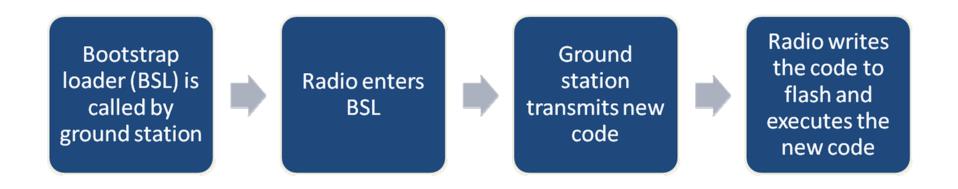
Concept for Design

- By using modern SoC a smaller, more capable beacon can be created that has numerous advantages over traditional beacons, while meeting the design goals
- A SoC brings tightly coupled RF, processor, and flash

Advantages

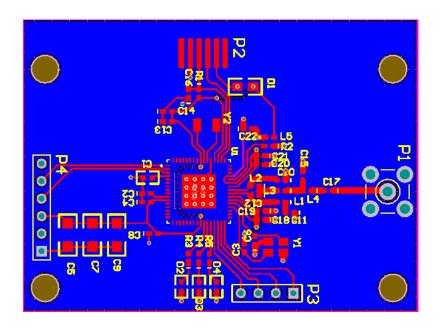
A SoC:

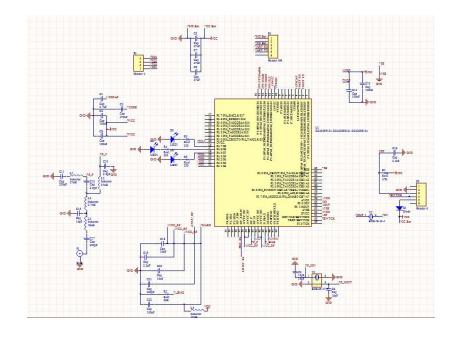
- Allows transmit power, frequency and protocol to be changed at any time
- No dependence on C&DH processor for reconfiguration
- Single SoC allows small size, lower component count, thus cheaper productions


User Advantages

- Reprogrammable thru RF
 - No physical access required
 - Post integration reconfiguration
 - On orbit reconfiguration
 - Allows final integration into satellite before IARU frequency allocation is complete, etc.

Capabilities


- UHF 390MHz to 460MHz
- 3.0V-4.0V up to 1.0Amp
- 1W max output expected
- Data rate effectively limited by link budget and licensing, hardware range from .6kBaud to 500kBaud
- Small- approx. 1in x .75in
- Currently supports GFSK, FSK


RF Update Process

Status

 Have populated prototype PCBs and software development is in progress

Conclusions

- A complete UHF communications solution can fit within a MHX2400 volume
- Requires no electrical changes to host system in example CubeSat Kit
- Users can replace low efficiency, low performance, and difficult software with easy to use, high efficiency and acceptable performance