

HYPERCUBE: Hyperspectral Imaging Using a CUBESAT

Ian S. Robinson
Senior Engineering Fellow
Raytheon Certified Architect

Space and Airborne Systems

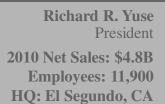
Raytheon

- A technology and innovation leader specializing in defense, homeland security and other government markets throughout the world
- 2010 net sales: \$25 billion
- 72,000 employees worldwide
- Headquarters: Waltham, Massachusetts

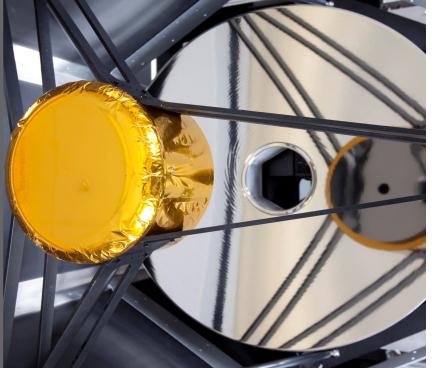
» A global leader in technology and innovation

Space and Airborne Systems

Raytheon Business Headquarters



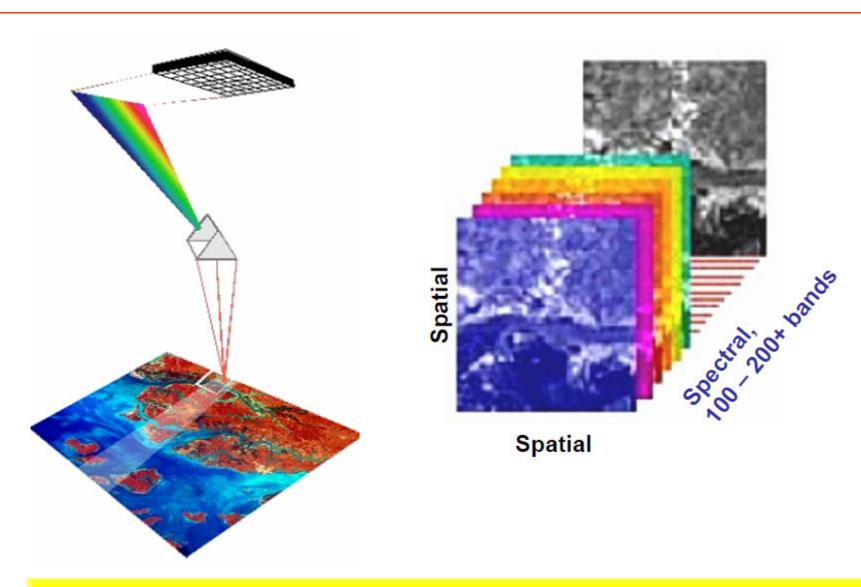
>> 72,000 employees; 2010 net sales: \$25 billion


Space and Airborne Systems

SPACE AND AIRBORNE SYSTEMS

Integrated sensing solutions for advanced applications in aviation and space technology

- Tactical Airborne Radars and Processors
- Electronic Warfare Systems
- Intelligence, Surveillance and Reconnaissance
- Integrated Aircraft Solutions
- Civil, National and Military Space Solutions



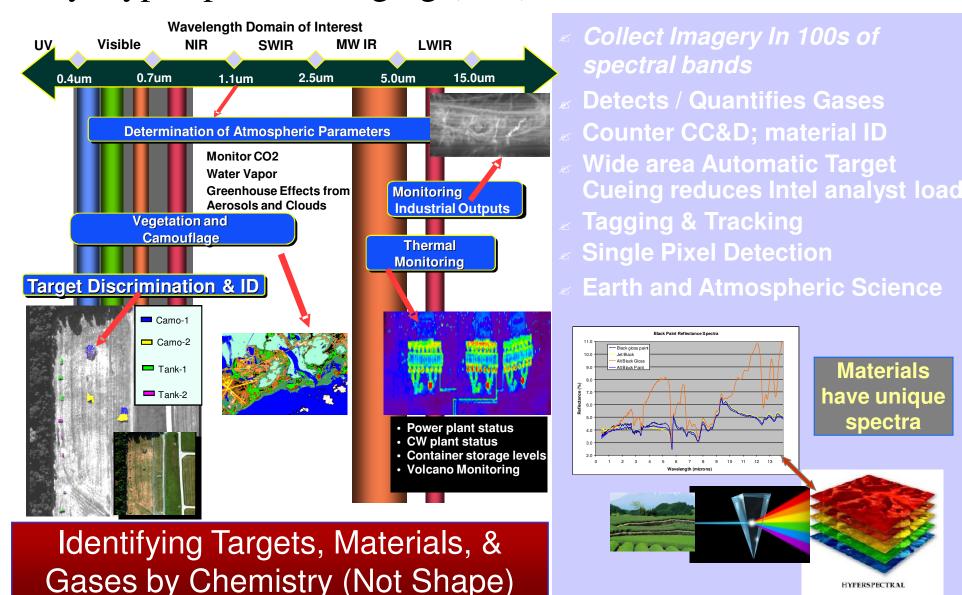
>> World leader in integrated sensor systems for space and airborne missions

Hyperspectral Imaging

RaytheonSpace and Airborne Systems

Every Pixel Contains a Complete Spectrum in a Hypercube

Space and Airborne Systems

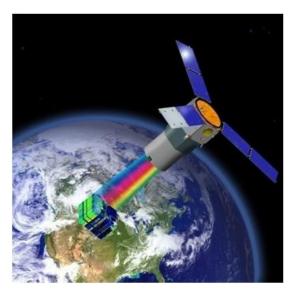

Materials

have unique

spectra

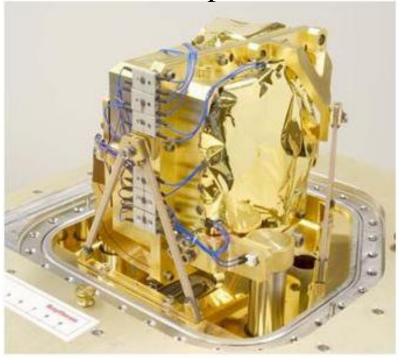
HYPERSPECTRAL

Why Hyperspectral Imaging (HSI)?


Applications of HSI

- Military/Intel
- Geology
- Forestry
- Agriculture
- Mapping/land use, land cover analysis
- Atmospheric analysis
- Environmental monitoring
- Coastal/Ocean
- Many, many others

CubeSat-Scale Hyperspectral Imager for Middle Atmosphere Investigations, Rick Doe et al, 2009 CUBESAT DEVELOPER'S CONFERENCE, SAN LUIS OBISPO, CA Spatial Heterodyne Spectrometer (SHS) Very Fine Spectral Resolution No Moving Parts Very large pixels


Raytheon Builds "Small" HSI Sensors

ARTEMIS/TACSAT-3

Gary Payton (2010-01-06). "Future of Air Force Space" American Institute of Aeronautics and Astronautics, Inc Payload ~170Kg
Bus ~140Kg

Dual –Band Spectrometer

TACSAT-3 Is A "Small Sat" But We Go Much Smaller

Top Level Trades and Drivers

	•	Aperture (cm)
SNR (per band)		Focal Ratio (F/#)
Spectral Coverage (microns)		Frame Rate
Spectral Resolution (nm)		Max Data Rate (Mbps)
Ground Sample Distance (GSD, m)		Avg Power (W)
Max Spectral Distortion		Mass (Kg)
Radiometric Accuracy (%)		FOV (degrees)
, , ,		FPA Temperature
Swath (Km)		Calibration
Repeat (days)		Orbit
		FPA Detector Size

- Can we identify useful missions within CUBESAT and other technological constraints?
- Yes: Many HSI sensors have flown providing Big Science with Small Apertures

HSI Sensor Parameters

	Hyperion	Landsat OLI	HYSPIRI*	M3**
SNR (per band)	40-200	~100	300-600	100-400
Spectral Coverage (microns)	.38-2.5	6 bands	.4-2.5	.43-3.0
Spectral Resolution (nm)	10	~100	10	10
Ground Sample Distance (GSD, m)	30	30	60	70
Max Spectral Distortion	20%	N/A	5%	10%
Radiometric Accuracy (%)	6	5	~5	5
Swath (Km)	7.7	185	145	40
Repeat (days)	large	16	~21	N/A
Aperture (cm)	12	13.5	~5	1.1
Focal Ratio (F/#)	11	6.4	short	3.55
Frame Rate	224	240	120	60
Max Data Rate (Mbps)	280	265	<200	44
Avg Power (W)	49	200	41	15
Mass (Kg)	51	375	55	8
FOV (degrees)	0.63	15	12	24
FPA Temperature	110	<100	<150	150
Calibration	ОВ	ОВ	ОВ	Cover

^{*} LWIR not included, includes two separate spectrometers

- LANDSAT is multi-spectral, wide swath, continuous recording of changes
- HYPERION proved additional utility of HSI
- M3 found water on the Moon
- HYSPIRI is two double sized M3s; heading towards a HyperLANDSAT

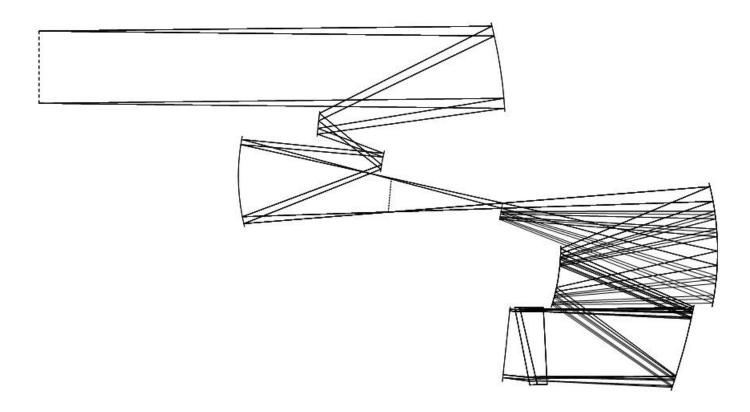
^{**} from 100Km

HYPER Sats

RaytheonSpace and Airborne Systems

	Hyperion	Landsat OLI	HYSPIRI*	M3**	HYPERCUBE	HyperLANDSAT
SNR (per band)	40-200	~100	300-600	100-400	>100	>100
Spectral Coverage (microns)	.38-2.5	6 bands	.4-2.5	.43-3.0	0.4-2.35	.4-2.5
Spectral Resolution (nm)	10	~100	10	10	10	10
Ground Sample Distance (GSD, m)	30	30	60	70	30	30
Max Spectral Distortion	20%	N/A	5%	10%	20%	20%
Radiometric Accuracy (%)	6	5	~5	5	10	5
Swath (Km)	7.7	185	145	40	19	185
Repeat (days)	large	16	~21	N/A	16	16
Aperture (cm)	12	13.5	~5	1.1	8.75	12
Focal Ratio (F/#)	11	6.4	short	3.55	4	4
Frame Rate	224	240	120	60	240	240
Max Data Rate (Mbps)	280	265	<200	44	384	>1000
Avg Power (W)	49	200	41	15	~10	TBD
Mass (Kg)	51	375	55	8	~5	TBD
FOV (degrees)	0.63	15	12	24	1.5	15
FPA Temperature	110	<100	<150	150	160	<150
Calibration	ОВ	ОВ	ОВ	Cover	Vicarious	TBD

^{*} LWIR not included, inlcudes two separate spectrometers


- HyperLANDSAT is a possible concept requiring only one spectrometer; twice the resolution of HYSPIRI but less SWAP
- HYPERCube can blaze the path

^{**} from 100Km

HYPERLandsat Can Be Built Today

Imaging Spectrometer Trade Studies: A Detailed Comparison of the Offner-Chrisp and Reflective Triplet Optical Design Forms, Cook et al, August 2010, San Diego, Vol. 7813

Design Concept for a Landsat-Class Imaging Spectrometer with Well Corrected Spectral Fidelity by Chrien and Cook (Proceedings of SPIE Vol. 5157, 2003)

Double Pass Reflective Triplet Spectrometer Is The Enabler

HYPERCUBE Needs

- Small spectrometer
- Low power focal plane assembly and electronics
- Low power/low mass cooling system
- Ability to manage 300+ Mbits/sec

Space and Airborne Systems

Compact HSI Cameras By Novosol

Sensor Dimensions 4.8" x 3.6" x 2.5" w/Lens Weight 1.2 lb. (0.54 kg) w/Lens Power < 3.3 W @ 12 VDC

Relative Aperture f/2.8

Spectral Range 900 – 1700 nm

Spatial Channels 1280

Channel IFOV 0.205 mrad
Full Field of View (FOV) 15 degrees
Dispersion/Spectral Channel 10 nm
Integration Time 12 ms max.
A/D Digitization 13 bits

Read Noise 110 electrons

FPA Detector InGaAs

Size 11" x 5.9" x 3.2"

Weight 6 lbs. Power 15W

Miniaturization of a VNIR hyperspectral imager Christopher P. Warren, et al, Proc. SPIE 6302, 63020N (2006)

Key Parameters for HYPERCUBE

- Get closer to target to reduce aperture
 - 8.75 cm ap, F/4
 - 35 cm focal length,
- Match LANDSAT
 - 241 revs in 16 days; 15.0625 revs/day, 95.6 min orbit (525), i=97.5
 - 525 Km altitude
- 30 m Ground Sample Distance (GSD)
 - Pitch =20 um, nadir GSD
 - $-250\,\mathrm{Hz}$
- Extend HSI capability beyond HYPERION
 - 200 colors, 640 pixels
 - Data rate at 12 bits is 384 Mbits/sec
 - 20 minute collect is 461 Gbits (58 GB)

On-Orbit Calibration and Focus of Responsive Space Remote Sensing Payloads Chrien, Schiller, et al. 4th Responsive Space Conference, April 24–27, 2006, Los Angeles, CA

• Limit on-board hardware, but can use Vicarious Calibration

Space and Airborne Systems

Enabling Technologies

USB 3.0 3-5 Gbits/sec transfer on Amazon

Transcend 500 GB 2.5-Inch USB 3.0 Military-Grade Shock Resistance Portable External Hard Drive for Mac and PC \$90.66

Super Talent RAID Drive 128 GB USB 3.0 Flash Drive STU28GSRK (Black)

Buy new: \$503.74

Lowest Useable Temp	< 150 K				
Input Power Limit	15 W				
Typical Operating	0.4W @ 180K				
Points	0.2W @ 160K				
Thermal Mechanical Unit					
	Compressor:	Expander:			
Mass:	36 g	35 g			
Package Size:					
Length:	0.92 in	2.1 in			
Width:	0.82 in	0.2 in			
Height:	0.82 in	0.2 in			
Total Package Volume:	0.49 in ³	0.2 in ³			

Raytheon SB339 SWIR HSI: High-performance Solutions for Hyperspectral Imaging Applications

Small-Scale Cryocooler

Raytheon

Space and Airborne Systems Cryocooler Product Line

Space and Long Life Tactical Cryogenic Cooling Solutions

Summary

- HSI can provide unique science capabilities
- HSI provides BIG SCIENCE with small apertures
- CUBESATS may be able to host HSI payloads with few or no modifications; HYPERCUBE can blaze path to Hyperspectral LANDSAT mission
- Enabling (non-space qualified) technologies available to support HYPERCUBE mission