
PolySat’s 
Next Generation Avionics

Presented By:

Greg Manyak
Avionics Software Project Lead



CubeSats Are Evolving

• Cal Poly and the CubeSat community is moving past educational 
experiments

• Now that we have a significant launch history, CubeSats are being looked at 
for more significant and involved missions

- The most exciting part is these more complex missions are actually 
being funded, too!

• However, payload volume and computing requirements are exceeding that of 
the typical CubeSat bus

• New bus design approach can help solve these problems



Avionics Discussion

• General Avionics Requirements

• PolySat’s Legacy Bus Design

• Legacy Bus Results

• Avionics Design Principles

• New Avionics Design

• Avionics Comparison

• Fault Tolerance



Avionics Requirements 

• Minimize volume

• Reasonable amount of power consumption based on performance

• Modular, reusable software

• Enables quick mission turn-around time



Legacy Bus Design

• Fault Tolerant Architecture:

- Redundant communication subsystems

- “Smart Fuse” custom circuit for latchup protection

- External watchdog chip for each controller

• 3 PIC18 4MHz single-purpose microcontrollers (1 C&DH, 2 Comm.)

- Full-custom software with telemetry collection and ADCS

• Typical payload requires own controller

C&DH

Comm.

TxRx

Comm.

TxRx

I2C

RF Switch

Payload

GPIO



Legacy Bus Results
• CP3 -- Successful launch, DNEPR 2 in April 2007

- Basic bus operations successful, but receive sensitivity limited commands

• CP4 -- Successful launch, DNEPR 2 in April 2007

- C&DH failure soon after reaching orbit, only comm. processor 
commands functional

• CP6 -- Successful launch, Minotaur 1 in May 2009

- Refly of CP3 with improved receive sensitivity

- Greater operational success; validated de-tumbling algorithm

- Unfortunately, same result as CP4: C&DH failed, ending mission



Failure Investigation

• The common believed cause for the CP4 failure was the I2C bus between 
the comm. and C&DH microcontrollers

- On CP6, I2C telemetry was added, in attempt to validate this assumption

- A CRC byte was also added to comm. to C&DH messages for 
transaction failure detection

• CP6 telemetry showed a constant ~8% I2C bus transaction failure rate

- Suggests I2C is not necessarily the source of blame

- The fact that the comm. and C&DH link failed again though does suggest 
this single point of failure is a significant problem



CP6 I2C Telemetry

I2C bus event data from CP6. Inset in upper left shows only the CRC error and bus fault event counters. 
Time progresses left-to-right, but not proportionally due to periods of time when no data was downlinked.



Lessons Learned
• Always implement a simple reset command!

• Hardware redundancy may not always provide sufficient fault tolerance

• I2C may not be the sole source of bus failure

• Gather as much telemetry available, even if not obviously usable



Avionics Design 
Principles

• Prefer software to hardware modularity

- “Easier” to throw hardware at the problem

- Reduces available payload volume

• Minimize hardware redundancy

- Too expensive: adds power, volume, price and complexity

- Not enough operational history to identify where it’s needed most

- Cost of a single CubeSat encourages redundancy through backup flight 
units 

• e.g. CP3 and CP6, CP2 and CP4



Change Payload 
Interface Philosophy

• Eliminate payload controllers!

- Most designs include a controller for the payload

• Appears to be the “clean” option, but adds substantial complexity!

• Custom interface protocol typically required and code/hardware 
rarely reusable

- Instead, payload can utilize a variety of direct interfaces from C&DH 
controller

• Similarly simple hardware design, but minimizes interfacing 
requirements

• Tradeoff is complexity of main controller is increased



New Avionics Design
• Culmination of design principles, requirements, and past experience

• Basis for two current missions: (3U) LightSail, and (1U) CP7

• Consolidation of standard bus electronics (EPS and C&DH) onto one board 

• 2 daughtercard expansion slots for transceiver(s) and/or mission specific 
electronics

• Eliminates 2 of 3 processors, but necessitates more powerful one

• C&DH built around 32bit ARM9-based Atmel chip

- Supported by SDRAM and NAND flash

• Resulting design only consumes approximately .1 liter!



Design Comparison

Revision Processor
Clock 
(MHz)

Volatile 
Memory

Non-Volatile 
Memory OS Volume

Idle Power 
(W)

1st 3x PIC18 4 3.75 KB 256 KB Custom .25L 0.2

2nd AT91SAM9 400 64 MB 528 MB Linux .1L* 0.34

*without batteries



New Avionics Software
• Significant software architecture change: new microprocessor runs full Linux!

- Instant learning curve reduction thanks to Cal Poly Linux coursework

- Large amount of pre-existing software to leverage for new design

• Custom distribution of Linux via use of open source tool Buildroot

• Each primary function relegated to a process

- e.g. Beacon, Data Logging, System Management, S/W Watchdog, 
Communications

• Each process utilizes a common library to provide frequently used 
capabilities

- Event scheduling, .config files, debug interface, inter-process 
communication, etc.

• Drivers implemented in both user space and kernel



New Avionics Fault 
Tolerance

• Primary mechanism to recover from single event upsets: reset satellite

- Hardware + software watchdogs, and long-term hardware counter

• Radiation tolerant phase change memory for multiple basic software images

- Custom bootstrapper to verify integrity of image before boot

• NAND Flash ECC for file system error correction and bad block detection

- “Free” from existing Linux driver and file system code!

• Robust message checksums for IPCs and commands



Implementation 
Progress

• Revision 2 of hardware ordered last week

- Revision 1 functional w/ wire mods and minor component additions

• Majority of low-level software functionality has been demonstrated

• First release of primary software libraries in April, 2011

• Engineering model to be completed by June, 2011



Conclusion

• We see this avionics system as an enabling technology for CubeSats

• Software modularity can be a wonderful thing

- However, needs to be considered at the beginning of the design!

• PolySat’s software team is interested in discussing Linux designs in detail



Questions?


