Relative Navigation, Timing & Data Communications for CubeSat Clusters

Nestor Voronka, Tyrel Newton

Tethers Unlimited, Inc.

11711 N. Creek Pkwy S., Suite D113
Bothell, WA 98011
425-486-0100x678 voronka@tethers.com

Motivation

Tethered CubeSats

 Relative distance and position important for tether dynamics knowledge and control

Fractionated Spacecraft (e.g. DARPA F6 clusters)

- Collision avoidance
- Relative position knowledge for orbit maintenance
- Aid in pointing higher gain apertures

Distributed Sensing systems

- Relative position knowledge for orbit maintenance
- Timing for synchronized sampling
- Knowledge of sensor baselines and orientations

RelNav Enables Cluster Operations

- Spacecraft subsystem that will enable a 'flock' of satellites to operate as a coordinated cluster
 - Relative Position and Orientation for Formation Flight
 - Provide reference data for cluster-based sensors
 - Cluster Synchronization and Timing
 - Essential for coordinated operations and coherent measurements
 - Inter-satellite communication
 - Data exchange for cluster-based sensors

	Kinematic GPS w/ UHF link	TUI's "Raw" RelNav
Relative Ranging Precision (1-σ)	0.1 m	<0.1 m
Relative Velocity Precision (1-σ)	10 mm/sec	5 mm/sec
Relative Attitude Precision (1-σ)	N/A	1°
Relative Timing Precision (1-σ)	1 nsec	0.3 nsec
Comm Data Rate(BER≤10 ⁻⁶)	0.0192 Mbps	>10 Mbps
Range of Operations	< 10km	<10 km

RelNav provides improved relative navigation, timing, and inter-sat communications over GPS-based methods to enable precision cluster flight and coherent sensing.

RelNav Core Technologies

Attitude Measurement Algorithms

- Processing of pseudo-Doppler signals to measure relative phase of signals between antennas
- Processing of relative phase signals to estimate signal angle of arrival within 1° (1- σ) from a small array

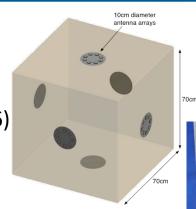
Ranging Measurement Algorithms

- Pseudo-random noise (PRN) ranging measurements
- Two-way ranging signaling to minimize errors due to clock offsets and drift

High-reliability, space-qualifiable SDR platform

 Current brassboard prototype constructed of COTS equivalent military-grade high-rel components

RelNav Configurations

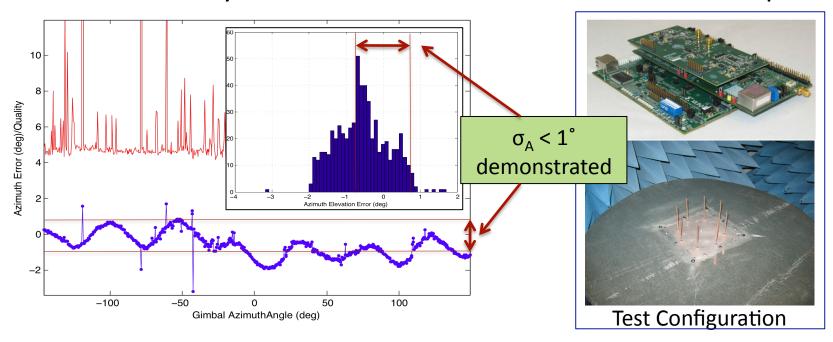


Microsat-scaled RelNav System

- Radiation-hardened subsystem for LEO microsatellite (≈100kg)
 - Includes multiple antenna arrays (nominally 6) to ensure full sphere field of view

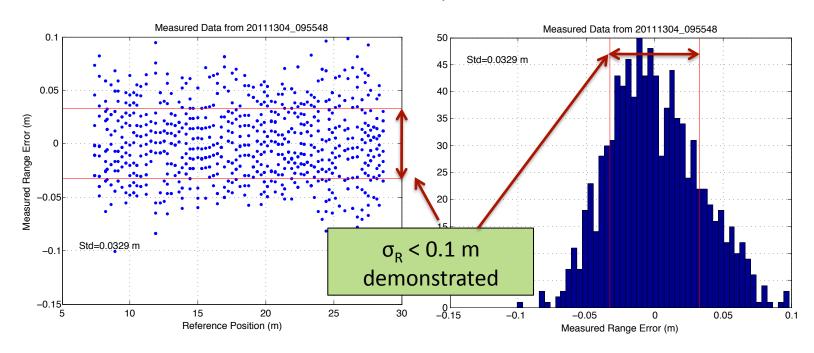
- Simplified antenna array configuration to minimize footprint on 3U CubeSat
- Include single antenna array to measure relative attitude in one dimension
 - Measures azimuth in what is nominally local horizontal FOV
 - Assumes long axis is nadir pointed
 - Use of highly integrated COTS parts reduces avionics SWaP
 - Does not affect ranging, timing, or communications performance

	MicroSat RelNav	CubeSat RelNav
Size	15x15x7.5	10x10x3.5
Mass	2.1 kg	0.38 kg
Power	2.4W avg.* 7.5W peak	1.4 W avg.* 5.0W peak

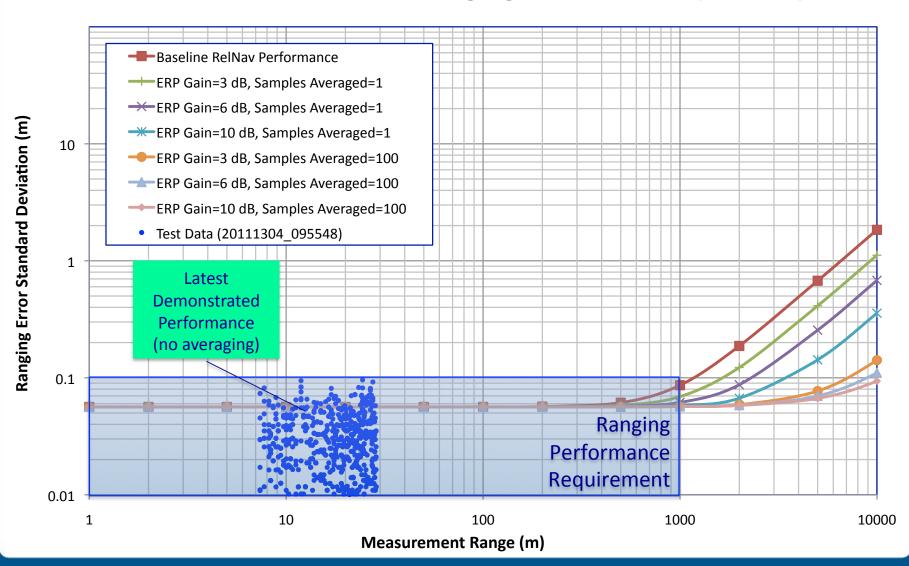

^{* 3} satellites in cluster, 1 Hz update rage, 3Mbps communications (25% of time after nav)

Demonstrated Attitude Performance

Relative Attitude Measurement


- Single antenna array performance with brassboard prototype
 - Azimuth precision: $\sigma_A = 0.69^{\circ} < 1^{\circ}$ requirement
 - Coarse estimate of elevation $\sigma_A = 5.4^{\circ}$ (auxiliary estimate)
- Error analysis indicates that calibration can increase precision

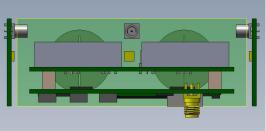
Demonstrated Ranging Performance

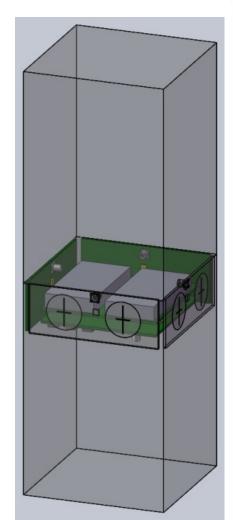

- Relative Range (Timing) Measurements
 - Two-way ranging performance with brassboard prototype
 - Typical single-bit measurement precision: σ_R = 0.02-0.09 < 0.1 meters
 - Outdoor measurements (not on RF range)
 - Time synchronization derived from ranging 0.1 meters ≈ 0.3 nsec
 - Improved clocking and averaging will increase precision
 - <1 cm resolution feasible with further improvements

Demonstrated Ranging Performance

Current RelNav Ranging Performance (110413)

RelNav for CubeSat



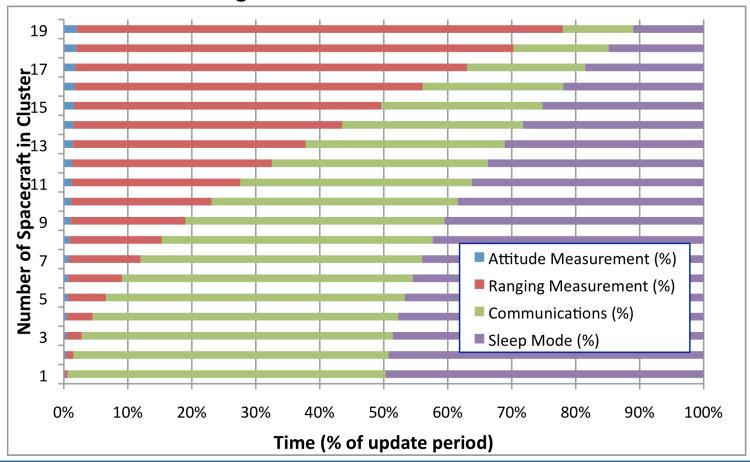

CubeSat RelNav Configuration

- 8-element (4x2) RHCP antenna array
- Integrated <0.5ppm oscillator and ability to interface to higher precision onboard clock
- Data link encrypted with AES-256

CubeSat RelNav SWaP Estimate

- Size: module is 35mm high => 0.35 U
- Mass: < 0.4 kg
- Power: 2.5W average, 5W peak
 - 3 element Cluster with 1Hz update rate on range, and attitude, with data communications
 - 50% of remaining time
 - Data throughput: 6 Mbps

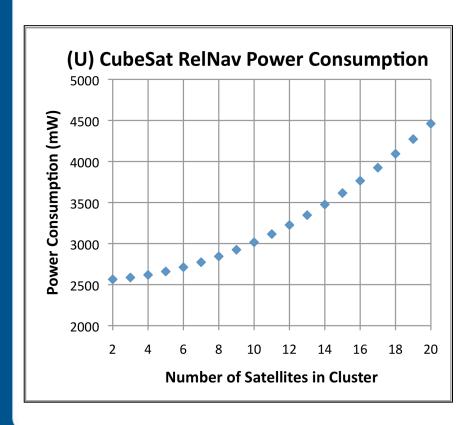
RelNav Communications Bandwidth

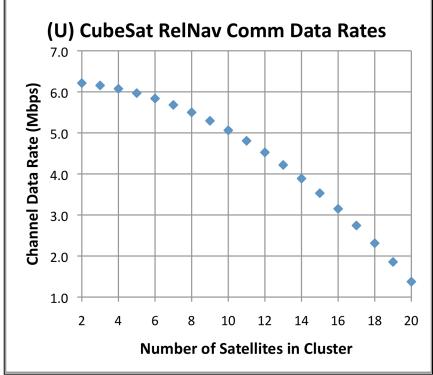

- SDR Enables Multiple Modes of Communication
 - Current ranging messaging supports channel rate of ≈ 400kbps
 - Reconfiguring the SDR for data-only communication can very readily provide a channel data rate of up to 12Mbps
 - >11dB SNR provides 10⁻⁷ bit error rate (BER)
 - Forward Error correction can be added to reduce BER at lower SNRs
- Simple approach relies on Time Division Multiple Access (TDMA) for satellite-satellite communications
 - If needed, CDMA can be used at the expense of more correlators in radio processors (potential SWaP impact)

CubeSat RelNav Operating Profile

Operating Parameters

- System measures attitude and range between all satellites in 2 seconds (0.5 Hz update rate)
- 50% of time remaining after measurements used for data comm




CubeSat RelNav Operating Profile

Operating Parameters

- System measures attitude and range between all satellites in 2 seconds (0.5 Hz update rate)
- 50% of time remaining after measurements used for data comm

Summary Program Status & Plan

Development Status

- Fully functional brassboard prototype
- Attitude measurements demonstrated to requirements
- Ranging measurements demonstrated to requirements
 - Comm crosslink @ 400kbits/second demonstrated

Future Plans

- Fabricate prototype & EM of CubeSat scale RelNav system
- Demonstrate high-speed communications capability
- Perform additional testing to verify performance over operating conditions
- Incorporate kinematics to increase precision and accuracy
- Explore other applications for TUI's RelNav SDR Technology