ExoplanetSat:
A Nanosatellite Space Telescope for Detecting Transiting Exoplanets

Matthew W. Smith¹ (m_smith@mit.edu), Sara Seager¹, Christopher M. Pong¹, Sungyung Lim², Matthew W. Knutson¹, Timothy C. Henderson², Joel N. Villaseñor¹, Nicholas K. Borer², David W. Miller¹, Shawn Murphy²

CubeSat Developers’ Workshop
April 20-22, 2011
San Luis Obispo, CA
Outline

• Science

• Concept of operations

• Long term vision

• Spacecraft design
 – Ongoing trades
 – Payload
 – Attitude determination and control

• Hardware test results

• Future Work
- **High-level goal:** Search the brightest Sun-like stars for transiting Earth-size planets
 - Constellation of satellites
 - Bright star search enables follow up characterization studies (vs. Kepler)
- **Prototype goal:** 3U CubeSat capable of 10 ppm photometry (7σ detection of Earth-sized planets) for bright ($0 \leq V \leq 6$) Sun-like stars
- **Why CubeSat form factor for transit searches of bright stars?**
 - Bright stars are spread across the sky
 - Need many, dedicated telescopes
 - Low cost per spacecraft, frequent launches

3U CubeSat form factor
Concept of Operation

Orbit Insertion:
Deployment from P-POD

Acquisition:
Detumble satellite
Initialize attitude estimate

Orbit Night:
Hold attitude
Observe target star

Orbit Day:
Hold attitude
Charge batteries

Slew:
Point solar arrays to sun

Slew:
Point optics to target star

Measurement:
Time series of stellar flux

Brown et al. 2001

2011 CubeSat Developers' Workshop
Long-Term Vision

- Fleet of small satellites (3U CubeSats, 6U CubeSats, EPSA-class) in low-Earth orbit, collectively monitoring hundreds of Sun-like stars

Phase 1:
- Single prototype
- Tech demonstration (arsecond-level pointing)
- Observe alpha centauri (brightest Sun-like star)
- Search for transits of known super Earth exoplanets

Phase 2:
- Add 3U models + 6U models with 120 mm apertures
- Observe 20 brightest stars for Earth-sized transits
- 10-15 spacecraft needed

Phase 3:
- Full planet detection survey
- Seek 95% confidence of 3+ planet detections
- Observe bright stars to V = 8
- Observe 250 stars
- Expanded fleet
Spacecraft Design

Reaction wheels + Torque coils

Avionics

Solar array (35 W, peak BOL)

Payload

- MAI-200
- Flight processor
- CCD drive electronics
- Piezo stage controllers
- Comm. transceiver
- MEMS gyros
- Electrical power subsystem (EPS) + batteries

Not shown: patch antennas, wiring

Lens
Piezo stage
CCD
CMOS imagers
Baffle (not shown)
Ongoing Trades

- **Mass**
 - Currently at approximately 5.5 kg

- **Volume**
 - Off-the-shelf vs. custom lens
 - Evaluating board layout (PC-104 cards vs. custom PCBs)

- **Detector architecture**
 - Number and placement of CMOS imagers for star tracking
 - Science detector selection
• Variation within CCD pixel requires arcsecond-level optical pointing
• Combined star tracker (CMOS imagers) and science telescope (CCD)
 – CCD: Defocused, ≥1 s integration time to collect many photons
 – CMOS: In focus, ≤100 ms integration time to provide frequent updates to estimator
• Two-stage pointing control
 1. Coarse pointing:
 Reaction wheels (< 120 arcsec 3σ)
 2. Fine pointing:
 Piezoelectric stage (5-10 arcsec 3σ)

• Simulation results

Coarse pointing (no stage)

Fine pointing (with stage)
• Hardware in-the-loop test
 – Successful proof-of-concept demonstration of fine pointing stage: **2.3 arcseconds (3σ)**
 – Inject simulated residual pointing errors from reaction wheels using **star field emulator**
 – Correct for pointing errors on **spacecraft emulator** with lens, detector, piezoelectric stage
Future Path

• ADCS hardware-in-the-loop test bed
 – Spherical air bearing
 – Two-stage control functional demo
 (piezo stage + reaction wheels in the loop)
• Payload
 – Intrapixel sensitivity measurements
 – Mature science data processing pipeline
• Avionics development
 – FPGA + Microcontroller architecture
• “Bus” subsystems currently at varying levels of maturity
 – Power
 – Structure
 – Comm
 – Thermal
• Environmental testing at Draper, MIT, NASA GSFC
• Goal: launch in 2012-13 time frame
 – Selected under NASA CubeSat Launch Initiative in January, 2011
Conclusion

- ExoplanetSat will combine the low-cost CubeSat platform with two-stage attitude control to detect Earth-sized planets around the brightest stars.

- The 3U prototype is under development with a potential launch date through the NASA CubeSat Launch Initiative.

- Key engineering breakthrough: very high precision pointing (arcsecond-level) in a CubeSat.

- ExoplanetSat initiates the graduated growth of a modular, extensible constellation, with the final phase being many satellites surveying bright stars for other Earths.
Acknowledgements

• NASA Jet Propulsion Laboratory
 – Dr. Wes Traub
 – Strategic University Research Partnerships Program (SURP)

• Lincoln Laboratory, Advanced Imaging Technology Group
 – Dr. Vyshi Suntharalingham
 – Dr. Barry Burke

• NASA Goddard Space Flight Center
 – Dr. Stephen Rinehart

• MIT
 – Students of 16.83x / 12.43x
 – Department of Aeronautics and Astronautics
 – Dr. George Ricker
Some Relevant Literature

