Dependable Multiprocessor (DM) CubeSat Implementation

presented at the

2010 Summer CubeSat Workshop/ Small Satellite Conference

August 8, 2010

Dr. John R. Samson, Jr.
Honeywell Aerospace, Defense and Space
Clearwater, FL

john.r.samson@honeywell.com

- Objectives
- Brief overview of DM Technology & Status
- DM Small Satellite/CubeSat effort
- Summary & Conclusion
- References

- Introduce DM technology to the Small Satellite/CubeSat community
- Provide overview of the current DM CubeSat effort
- Elicit interest in possible joint DM-CubeSat and/or DM small satellite experiment
 - radiation issues
 - thermal issues
 - structural issues
 - benefits of increased on board processing

Dependable Multiprocessor – What is it?

- cluster of COTS high performance processors
- operated under the control of a reliable system controller and technologyand platform-independent fault tolerant middleware
- flexible
 - user-configurable fault tolerance includes hybrid replication [temporal and spatial self-checking and TMR (Triple Modular Redundancy) for critical functions and ABFT (Algorithm-Based Fault Tolerance)]
- scalable
- easy to use

DM ST8 Flight Experiment System

The platform and technology-independent DM Middleware (DMM) is DM technology; DM technology is <u>not</u> the underlying hardware

Dependable Multiprocessor (DM): A COTS-Based High-Performance Payload Cluster Computing Platform Honeywell

What is DM?

- A high-performance, COTS-based, fault tolerant cluster onboard processing system that can operate in a natural space radiation environment
- High throughput density (>300 MOPS/watt), scalable & software based
- High system availability >0.995
- High probability of timely and correct delivery of data >0.995
- Technology independent system software that manages cluster of high performance COTS processing elements
- Technology independent system software that enhances radiation upset tolerance

TRL6 Testbed Ethernet Switch Computer Countroller Courtoller Data Processor (Mass Data Store) Discrete Control Network

Why is DM important?

- Flying high-performance COTS in space is a long-held NASA and DoD objective
- DM is bringing this objective closer to reality
- Enables heretofore unrealizable levels of onboard data and autonomy processing
- Enables faster, more efficient application development
- Enables users to port applications directly from laboratory to space environment
- DM is a significant paradigm shift
 - provides ~ 10X 100X throughput density available with current software programmable RHBP & RHBD processors at much lower cost
 - software-based technology allows space to keep pace with terrestrial state-of-the-art COTS

Status?

- Since 2004, NASA NMP ST8 invested >\$13M in the development and demonstration of DM technology through TRL6
- Demonstrated DM predictive availability, timely delivery of correctly processed data, and performance models
- Demonstrated ability to meet NASA Level 1 requirements/goals
- Successfully completed system-level radiation testing
- DM project has further developed, refined and demonstrated the process for migrating COTS high performance computing to space
- DM technology has been demonstrated on wide variety of platforms and applications
- DM technology is applicable to wide range of missions
- Seeking a ride to space to achieve TRL7

DM Technology is Ready for a Flight Experiment

Dependable Multiprocessor Technology

Summary of DM technology advance

- Architecture and SW framework that enables COTS-based, high performance, scalable, cluster processing systems to operate in space
 - "SW-based SEU-tolerance enhancement"
- MPI-based for ease of porting applications from lab to space
- Adaptable to environment: radiation, mission, mode
- Validated models that can predict system performance in future missions & environments

Applications of DM technology

- DM technology is applicable to a wide range of NASA & DoD missions (HSI, HTI, SAR, etc.)
- enables previously unrealizable levels of science and autonomy processing
 - -- NASA science missions
 - -- landers/rovers
 - -- robotic servicing of satellites
 - -- ground/lunar/Mars-based systems
- High Altitude Airships (HAAs)
- Unattended Airborne Vehicles (UAVs)
- Un-tethered Undersea Vehicles (UUVs)
- Stratellites
- Operationally Responsive Space (ORS)
- rad hard space applications

DM Technology Development Status

Honeywell

- TRL6 Validated Technology
 - successful operation validated in a radiation environment
 - -- high performance
 - -- high availability
 - -- high probability of timely and correct delivery of data
 - -- predictive performance models
- Multiple applications supported
 - Hyper-Spectral Imaging (HSI)
 - Synthetic Aperture Radar (SAR)
 - multiple astrophysics applications (CRBLASTER, QLWFPC2)
 - FFTs, matrix operations, etc.
- Easy to Use/Low Overhead
 - independent 3rd party ports
 - <10% throughput and memory overhead

Critical Design Review

ruggedized, conductively-cooled,
 COTS boards can fly in space

DM TRL6 Flight Experiment Testbed

System Controller Rad Hard Single Board Computer Standard cPCI (compact Peripheral Component Interconnect) Backplane

Flight COTS

Processors

Flight Mass Memory Module

DM software and COTS technology is ready to fly; only needs to be put in a flight chassis and space qualified

Options for Flying DM Technology Experiment

- Fly existing DM ST8 flight experiment system
- Fly DM hardware and software in a smaller flight chassis
- Fly DM hardware and software in customer-supplied chassis
- Fly DM in conjunction with a real sensor
 - add sensor I/O and software
 - demonstrate faster onboard processing capability and reduced downlink bandwidth
- Port full or partial DMM (Dependable Multiprocessor Middleware) to new platform *
- Others
 - * Able to use technology-independent DMM on other hardware platforms; currently being considered for a nanosatellite mission^

[^]Space Experiment Review Board (SERB)-sponsored flight experiment

Dependable Multiprocessor Middleware is Independent of Hardware Platform

Honeywell

6U cPCI Package (Original ST8 Flight Experiment)

3U cPCI Package

Nanosatellite-Size Package (Preliminary)

Dimensions: 10.6" x 12.2" x 24.0"

(26.9 cm x 30.9 cm x 45.7 cm)

Weight (Mass): ~ 61.05 lbs (27.8 kg)

Power: ~ 100 Watt (nominal)

~ 120 Watts (max)

System Complement:

- one (1) rad hard System Controller
- three (3) Data Processors
- one (1) Mass Data Storage module
- one (1) Gigabit Ethernet Switch

Chassis oversized relative to the complement of DM hardware due to thermal limitations of the ST8 carrier spacecraft & total solar exposure

~4500 MFLOPS per 7447a DP node (measured HSI application)

Dimensions: 12.0" x 9.2" x 8.0" (30.5 cm x 23.4 cm x 20.3 cm)

- ~ 17.5 lbs w/o circuit boards
- ~ 26 lbs with circuit boards
- ~ 70 watts nominal power
- ~ 100 Watts (max)

System Complement:

- one (1) rad hard System Controller
- three (3) Data Processors
- one (1) Mass Data Storage module
- one (1) Gigabit Ethernet Switch

AiTech COTS chassis flown on ORBITAL EXPRESS flight experiment

~4500 MFLOPS per 7447a DP node (measured HSI application)

Dimensions: ~ 10" x 6" x 6" (25.4 cm x 15.2 cm x 15.2 cm)

- ~ 9 lbs (4.08 kg)
- ~ 25 watts

System Complement:

- 6 COM DP configuration with Rad Hard System Controller and 2 Ethernet switches*
- * Based on TRITON-TX51 SIMM COMs for easy visualization and analysis
- ~1600 MIPS per Cortex-A8 COM node

Gumstix: Small, Light-Weight, Low-Power Processing Honeywell

DM 3U CubeSat Concept with Rad Hard Controller* Honeywell

Original Concept

3U CubeSat size: 10 cm x 10 cm x 34 cm

1U CubeSat size: 10 cm x 10 cm x 10 cm

BRE440 Rad Hard Controller is 10 cm x 16 cm (needs to be mounted on an angle)

Side View

Axial View

* Using COTS parts

Gumstix "Stage Coach" Expansion Board Product

Gumstix Cluster: 7 Gumstix Modules on "Stage Coach" Expansion Board

CubeSat Side View

CubeSat Axial View

Summary of DM CubeSat Effort To Date

- DM-based CubeSat feasibility study
 - size, weight, power, mechanical (structural & thermal), radiation
- Performed atmospheric neutron testing of Gumstix module and two (2) Ethernet devices at LANL
 - results directly applicable to high altitude UAV and High Altitude Airship (HAA) applications
 - results extrapolated to space applications
 - future radiation tests planned (including proton and heavy ion testing)
- DMM (Dependable Multiprocessor Middleware) ported to Gumstix module
 - biggest issue to address was the Big Endian/Little Endian conversion for the ARM processor
 - applications running on Gumstix module under DMM control
- In the process of building a Gumstix-based DM cluster
 - 4 6 nodes running parallel applications with BRE440 system controller
- Investigating other "COMs" for Nano-Sats and Cubesats

Summary & Conclusion

- DM technology is the Dependable Multiprocessor Middleware (DMM)
 - DMM is platform- and technology-independent
 - DMM has been successfully and easily ported to many different processors and Operating Systems
 - -- now includes ARMs
 - -- includes state-of-the-art multi-core processors
 - -- working on future tiled architectures, e.g., Tilera Tile64 and MAESTRO
 - --- at Honeywell and at the NSF Center for Reconfigurable Highperformance Computing (CHREC) at the University of Florida
- Processing technologies used in space applications no longer need to be
 2 3 generations behind state-of-the-art terrestrial processing technologies
- DM technology is definitely applicable to CubeSat and Small Satellites
 - more onboard processing within size, weight, power, and cost constraints
 - -- more science/more autonomy
 - -- faster onboard processing, faster frame processing
 - -- reduced downlink bandwidth requirements
 - -- processed data/information directly to the user
- •DM can incorporate new techniques/technologies to overcome performance gaps with regards to throughput, power, mass, radiation, & cost
- •NASA, the DM project, and Honeywell are interested in exploring collaborative CubeSat and Small Satellite opportunities

- The Dependable Multiprocessor* effort was funded under NASA NMP ST8 contract NMO-710209
- The DM CubeSat effort to date has been carried out on Honeywell internal investment
- The author wishes to acknowledge the contributions of DM team members at Honeywell Defense & Space Systems in Clearwater, FL, the High-performance Computing and Simulation Laboratory at the University of Florida, and JPL

For more information contact:

Dr. John R. Samson, Jr. Honeywell Defense & Space, Clearwater, FL john.r.samson@honeywell.com (727) 539 – 2449

^{*} The Dependable Multiprocessor (DM) project was originally known as the Environmentally-Adaptive Fault-Tolerant Computer (EAFTC) project

- [1] Samson, Jr., John R., Grobelny, Eric M., Clark, M., Driesse-Bunn, S., Van Portfliet, S., "NMP ST8 Dependable Multiprocessor: Technology and Technology Validation Overview," Proceedings of the 48th AIAA Aerospace Sciences Meeting Conference, Orlando, FL, January 4-8, 2010.
- [2] Grobelny, Eric M., Samson, J., Clark, M., Driesse-Bunn, S., Van Portfliet, S., "NMP ST8 Dependable Multiprocessor: Technology Validation Approach and Results," Proceedings of the 48th AIAA Aerospace Sciences Meeting Conference, Orlando, FL, January 4-8, 2010.
- [3] Samson, Jr., John R., Grobelny, Eric M., Driesse-Bunn, S., Clark, M., Van Portfliet, S., "Post-TRL6 Dependable Multiprocessor Technology Developments," Proceedings of the 2010 IEEE Aerospace Conference, Big Sky, MT, March 7-12, 2010.
- [4] Samson, Jr., John R., and Grobelny, E., "NMP ST8 Dependable Multiprocessor: TRL6 Validation Preliminary Results," Proceedings of the 2009 IEEE Aerospace Conference, Big Sky, MT, March 8-13, 2009.