

WWW.INTERORBITAL.COM

Interorbital Systems' Dedicated, Non-RideShare, and Co-Manifested TubeSat/CubeSat Launch Programs

- Founded in 1996
- End-to-end R&D and manufacturing facilities
- Two operational rocket engine test sites
- Location: Mojave Spaceport in California
- Launch Operations (land): IOS' private spaceport, Kingdom of Tonga
- Launch Operations (ocean): Worldwide

Project History

Pressure-Fed Rocket Engines

GPRE 2.5KLMA Liquid Oxygen/Methanol Engine: Thrust = 2,500 lbs.
GPRE 0.5KNFA WFNA/Furfuryl Alcohol (Hypergolic): Thrust = 500 lbs.
GPRE 0.5KNHXA WFNA/Turpentine (Hypergolic): Thrust = 500 lbs.
GPRE 3.0KNFA WFNA/Furfuryl Alcohol (Hypergolic): Thrust = 3,000 lbs.
GPRE 6.0KNHXA WFNA/Turpentine (Hypergolic): Thrust = 6,000 lbs.
GPRE 10.0KNHXA WFNA/Turpentine (Hypergolic): Thrust = 10,000 lbs.

Pressure-Fed Sounding Rockets

Neutrino: GPRE 0.5NFA Engine Tachyon: GPRE 3.0KNHXA Engine CPMTV: GPRE 6.0NHXA Engine CPM SR45: GPRE 6.0NHXA Engine

Manned Systems

Dick Rutan's Global Hilton Project Helium/Hot Air Balloon System Propane Tanks

Key Rocket Hardware Built In-House

Advanced Composites including state-of-the-art lightweight propellant tanks

Ablative Rocket Engines and Components

Advanced Guidance Hardware and Software

Modular Rocket Components

Small Satellites: TubeSat Kit

Rocket Injectors, Valves Systems, and other Metal Components

- A rounded hexadecagonal form-factor
- Assembled primarily from printed circuit boards (PCBs)
- The satellite's system PCBs are stacked and separated by standoffs
- 8 Solar Cell PCBs and 8 aluminum radiator strips form the outer shell
- Dipole antenna
- Diameter = 8.9 cm (3.5 in) Length = 12.7 cm (5 in)
- Mass = 0.75 kg (1.65 lb)
- Experiment or Application mass = 250 g (0.55 lb)

TubeSat with Sample Ejection Cylinder

IOS TubeSat PCBs

Solar Cell PCB

Power Management PCB

Antenna PCB

Transceiver PCB

Microcontroller PCB

TubeSat Component Layout

IOS TubeSat Kit Hardware

- PCB Gerber Files
- 50 Spectrolab TASC solar cells
- A Transceiver (Radiometrix or Microhard n920F or n2420F)
- A Li-ion battery pack (3.7 V 5200 mAh)
- Microcomputer (NetMedia BasicX-24)
- Antennas
- Fasteners
- Complete instructions

The IOS TubeSat kit also includes a launch to a 310-km circular polar orbit on the IOS N45 rocket!

IOS Unique Launch Vehicle Technologies

Environmentally Safe, Storable, High-Density Hypergolic Propellants

White Fuming Nitric Acid (WFNA) and Turpentine/Furfuryl Alcohol Instantaneous chemical ignition eliminates need for complex ignition system

Low-Cost Propellant Tank Technology

Custom aluminum tank liners and tank ends State-of-the-art composite tank reinforcement technology

Blowdown Propellant Feed

Eliminates the need for turbopumps or a separate pressurant system

Unique Rocket Engine Injector

Automatically maintains propellant jet flow rate in blowdown mode Maximizes specific impulse over a wide pressure input range

Differential Throttling and Fluid Injection Rocket Steering Technology

Allows all rocket engines to be fixed Valves control the rocket attitude Hold downs are not required

Modular Rocket System – The Common Propulsion Module (CPM)

Low-thrust rocket engines Low rocket engine development cost Small diameter tanks; slosh baffles not required Individual rocket modules can be flight tested at a very low cost Launch vehicle can be customized for any payload Assembly-line mass production

NEPTUNE Series Modular Rockets

- The Common Propulsion Module (CPM) is the basic building block of the N-Series Rockets
- Bi-propellant storable, hypergolic liquid rocket system
- Blowdown propellant feed
- State-of-the-art composite propellant tanks
- Throttleable, ablatively-cooled rocket engines
- CPMs clustered together in multiples to meet mission requirements

Rocket Engine Fuel Tank Oxidizer Tank Nose Cone

www.interorbital.com

Common Propulsion Module (CPM)

N30 and N45 Modular Rocket System

N30: Payload = 30 kg

N30 and N45 Overview

- Portable, dedicated small sat launchers
- Easy to transport on highways, ocean, or by air in standard 40-foot cargo container
- Can be launched from land or sea
- Launched from land from a Mobile Launch System
- Launched from the ocean using the Floating Launch Method
- Launch-on-Demand System
- Ultra low-cost, rapid access to space
- Four low-altitude test flights cleared by FAA for 2010
- Three Orbital Missions planned for 2011

CPM Flight Test Program

CPM TV: Common Propulsion Module Test Vehicle

- Low-altitude unguided flight (1) (35,000-50,000 ft)
- Low-altitude with guidance flights (2) (35,000-50,000 ft)
- Hover test (low altitude) (1)

CPM Mobile Rocket Launcher

- Hydraulic lift system
- Equipped with propellant-fill hardware
- A full-service rocket transportation and launch unit
- Mobile launch platform for IOS CPM SR45 sounding rocket program

Rocket Engine Static Test Infrastructure

- New Vertical Test Stand
- Maximum thrust capacity = 12,000 lbs
- Rocket plume does not impact ground

Spaceport Tonga

N45: Dedicated Small Satellite Launcher

Standard Orbit

Circular Polar 310-km (higher altitudes available)

Estimated 1.5 to 3 month decay to reentry

- TubeSat Payloads (48)
- CubeSat Payloads (30)

- Combined TubeSat and CubeSat Payloads (variable)
- Single small satellite (up to 45-kg) Max Payload Size: 60 cm X 80 cm (square or round cross section)

Customized orbits are available

N45 Launch Schedule: 2011

End of First Quarter 2011: 32 TubeSats and 10 CubeSats

Orbit: Circular Polar Altitude: 310 km

Second Quarter 2011: 20 CubeSats

Orbit: Circular Polar Altitude: 620 km

N30 Satellite Module

N45 Launch I Manifest, March 2011

CubeSats

- UC Irvine
- EuroLuna (2U from Denmark, GLXP Team) MiniRomit 1
- Universidad de Puerto Rico

TubeSats

- Morehead State University (Kentucky)
- InterAmerican University of Puerto Rico
- University of Sydney (Australia)
- Aslan Academy (Private LA High School)
- Project Calliope (Space Music Project)
- SYNERGY MOON (GLXP Team)
- Naval Postgraduate School (3) (Maritime Interdiction)
- Defense Science and Technology Lab (DSTL,UK)
- An unnamed US Military client
- Austrian Arts Group mur.org
- United States Military Academy at West Point

Standard Launch Price List

Launch Vehicle: NEPTUNE 45 (N45)

Orbit Type: Circular Polar Orbital Altitude: 310 km

Price List

CubeSat:\$12,500 (launch only)TubeSat:\$8,000 (basic kit including launch)

Single 45kg Satellite Payload: \$384,000

TubeSat slots available for first orbital mission: 18

CubeSat slots available: 5

- CubeSat or TubeSat form-factor
- Maximum mass per single satellite unit: 1 kg
- Number of units: 12 units (multiple 2U and 3U satellites acceptable)
- Price: \$25,000 per satellite (kit cost not included)
- Current Manifest: University of Sydney has reserved space for a 2U CubeSat

WWW.INTERORBITAL.COM